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ABSTRACT

Sequence elements, at all levels—DNA, RNA and
protein, play a central role in mediating molecular
recognition and thereby molecular regulation and
signaling. Studies that focus on measuring and
investigating sequence-based recognition make
use of statistical and computational tools, including
approaches to searching sequence motifs. State-of-
the-art motif searching tools are limited in their
coverage and ability to address large motif spaces.
We develop and present statistical and algorithmic
approaches that take as input ranked lists of se-
quences and return significant motifs. The efficiency
of our approach, based on suffix trees, allows
searches over motif spaces that are not covered by
existing tools. This includes searching variable gap
motifs—two half sites with a flexible length gap in
between—and searching long motifs over large al-
phabets. We used our approach to analyze several
high-throughput measurement data sets and report
some validation results as well as novel suggested
motifs and motif refinements. We suggest a refine-
ment of the known estrogen receptor 1 motif in
humans, where we observe gaps other than three
nucleotides that also serve as significant recognition
sites, as well as a variable length motif related to
potential tyrosine phosphorylation.

INTRODUCTION

Transcription factor (TF) activity is important and central
in regulating cellular processes. TFs recognize their
specific targets using molecular pattern recognition mech-
anisms that are not completely understood. One challenge
in improving this understanding is the discovery of
sequence motifs that partake in this recognition and tar-
geting mechanism. The discovery of sequence motifs helps
in constructing models and in explaining sequence vari-
ation that may have functional effect.

The occurrence of recognition sequences in RNA mol-
ecules plays a central role in enabling controlled regula-
tion by RNA-binding proteins (RBPs) and by microRNAs
(miRNAs). For example, the Pumilio family (Puf) proteins
constitute a highly conserved family of RBPs that regulate
target messenger RNAs (mRNAs) via binding-specific
RNA sequences in their 30UTRs (1). PUF3, PUF4 and
PUF5 in Saccharomyces cerevisiae, and PUM1 in
humans, are known to bind sequences that contain a
core ‘UGUR’ tetranucleotide followed by sequences that
vary between members of this family (2–4). PUF1 and
PUF2 in S. cerevisiae bind sequences containing the dual
UAAU motif (5). In the case of miRNAs, it is known that
they act by binding to the 30UTR of mRNAs, forming
hybrids that consist of the binding site in the 30UTR and
of the miRNA seed region (positions 2–8 in the miRNA).
MiRNAs play important regulatory roles, and it is
estimated that more than one-third of the human
protein coding genes are regulated by miRNAs (6).
In addition, protein modification and protein–protein

interactions are also potentially driven by mechanisms
that involve specific protein-sequence recognition. Many
ATP- and GTP-binding proteins have a phosphate-
binding loop (P-loop), which typically consists of the
sequence motif (A/G)X4GK(S/T), i.e. alanine or glycine
followed by a spacer of length 4 that is followed by a
glycine, then lysine and a serine or threonine (7,8).
The important role played by sequence elements in

molecular regulation and signaling, as discussed above,
is the motivation for significant scientific and techno-
logical development activity that focuses on measuring
sequence-based recognition and on computational
approaches and analysis tools designed to improve our
understanding of regulation mechanisms involving
sequence elements.
Techniques, such as ChIP-chip (9), ChIP-PET (10) and

ChIP-seq (11) provide large volumes of genome-wide data
on regions of transcription factor binding, measured in
actual samples and in various conditions. Similarly,
mRNA targets of RBPs are studied using techniques like
RIP-chip (4) and CLIP (12). SILAC (13) and other prote-
omics techniques can be used to characterize the effect of
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amino acid sequences on protein function. Computational
tools and approaches to motif discovery form part of the
data analysis workflow that is used to extract knowledge
and understanding from data generated through the above
techniques as well as other measurement approaches.
Motif discovery has attracted much research interest in

recent years, resulting in more than a hundred different
tools for motif discovery (14). A large subset of motif
finders, such as MEME (15), NMica (16), AlignACE
(17) or MDscan (18), fit position weight matrices
(PWMs) to the sequence data. Most techniques, including
those mentioned above, approach motif finding by dis-
covering sequence elements that occur more often than
expected in a set of sequences. Some techniques compare
a target set to a background set. It is often the case,
however, in biological measurement data that results are
given as a ranked list of quantities. For example, Gerber
et al. (2) report on the set of targets for five RNA-binding
proteins from the Pumilio family, including binding ratios
for each S. cerevisiae gene. This is the also the case for
expression profiling studies as well as for all the aforemen-
tioned ChIP techniques, whether based on microarrays or
on sequencing. Statistical approaches, such as GSEA (19)
and minimum hypergeometric (mHG) (20–22), address
enrichment in ranked lists of elements. Based on the
mHG statistics, DRIM is a motif-finding tool (20) that
exploits the ranking derived from experimental measure-
ments to discover motifs that are rank imbalanced in the
input list.
While most motif-finding approaches consider continu-

ous sequence elements, it is of interest to also consider
gapped sequence elements. For example, GAL4 in S.
cerevisiae binds DNA as a homodimer. Its binding site
comprises 17 bp, containing palindromic CGG triplets at
the ends that are separated by an 11 bp gap (23).
Additionally, PUF2 in S. cerevisiae binds 30UTR of
mRNAs by recognizing a motif of two UAAU
tetranucleotides separated by a three nucleotides linker
sequence (5). Therefore, an interesting case, related to
the role of gapped motifs, is of a protein that binds the
DNA or RNA as a dimer. There are also cases where
recognition is based on sequence elements with variable
length gaps separating the half sites. An important
example is the recognition site of the tumor protein p53
(TP53). In many organisms, this site is composed of two
copies of the half-site RRRCWWGYYY separated by a
spacer, usually of length 0–21 bp (24).
Computational models of dimers binding to two

half-sites that feature certain spacing rules were suggested
in a handful of recent studies. Several algorithms,
including BioProspector (25), Gemoda (26), SPACER
(27), SPACE (28) and GLAM2 (29) deal with the
problem of discovering gapped motifs. van Helden et al.
(30) consider a model of a spaced pair of trinucleotides,
separated by a spacer of a fixed length (e.g. 0–16 nt). The
algorithm exhaustively tests all 46 combinations of pairs of
trinucleotides. This method is highly efficient in detecting
sites bound by C6Zn2 binuclear cluster proteins. However,
it allows no flexibility in the motif structure in the context
of dyad size and spacer characterization. Carvalho et al.
(31) proposed an algorithm named RISO to find

structured motifs. The algorithm provides flexibility in
the sense that it allows mismatches in the sites during
search, and variable length spacing is supported. It also
uses truncated suffix trees instead of an exhaustive search
to efficiently enumerate candidate motifs. The main
drawback of this method is its inability to deal with
large amounts of sequence data since its complexity
grows rapidly both in time and in space. Chen et al. (32)
developed a method for discovering discontinuous
patterns among input sequences by linking short motifs
that are located at conserved regions with a flexible gap of
length 0–15. One limitation of this algorithm is that it uses
positive and negative sets to filter candidate motifs based
on ChIP-chip P-value fixed thresholds. Furthermore, as
gapped motifs may consist of half-sites that are not inde-
pendently enriched, this method will potentially miss some
significant results. Recently, a gapped PWM model was
suggested for discovering variable length DNA-binding
sites (33). This model extends the PWM model by
introducing an optional gap character, which may
appear once and at a certain position inside the motif,
to simply model variable-length motifs. A main
drawback of this model is that the gap can be one base
only. To the best of our knowledge, none of the methods
listed above can efficiently discover variable gapped motifs
under a definition that allows full flexibility of the gap.

As evidenced in the work cited above, the search for
variable gapped motifs (VGMs) poses a tremendous com-
putational challenge, as the search space becomes huge,
when considering parameters of biological relevance.
Specifically, if we seek DNA motifs containing two-half
sites, each of length 4, where the gap between the 4-mer
half sites can be any subset of the numbers {0, . . . , 10},
then an exhaustive search will span 48 � 211 candidates,
which is far too large to routinelyaddress in reasonable time.

We mentioned the role of amino acid sequence motifs in
mediating ATP and GTP binding. Another example of the
role of protein motifs is the motif HRDLAARN which is
conserved in the catalytic domain of protein-tyrosine
kinases (34–36) and which we come back to in our
‘Results’ section. Protein alphabet is large and therefore
protein motif search also poses a computational challenge.

Therefore, to address the discovery of VGMs, long
motifs, or to deal with large alphabets, we cannot take a
naı̈ve approach that uses exhaustive search over the motif
space. In this work, we developed an efficient statistical
and algorithmic approach to searching motifs in ranked
lists of sequences. Our method, implemented in
DRIMUST, has several advantages over existing
methods. First, unlike many other approaches, it does
not exhaustively search over motif spaces and therefore
can detect variable gapped motifs, long motifs and
motifs over large alphabets. Furthermore, we search
motifs in ranked lists and not in fixed sets of sequences
as is the case for many other methods. And, most import-
ant, to the best of our knowledge, DRIMUST is unique in
efficiently addressing variable gap motifs under a defin-
ition that allows full flexibility of the gap. Specifically,
methods that fit PWMs to the sequence data are limited
in addressing variable gap motif discovery under this
broad definition. This intrinsic shortcoming of PWM
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representations is evidenced, for example, by the limita-
tions (to a single character gap) of the model described
in (33).

Our approach to overcoming the computational chal-
lenges associated with large motif search spaces is based
on using suffix trees, to restrict our attention to motifs that
actually occur in the input list of sequences. A suffix tree is
a data structure that represents all the suffixes of a given
string in a way that allows fast implementation of many
string operations. Suffix trees are useful in many applica-
tion contexts, including bioinformatics and computational
biology (37,38). Perhaps the simplest application example
comes from the context of text search. Consider
the substring problem, whose input is text T of length
M. After an O(M) preprocessing, one is required to deter-
mine, for any string S of length m, in O(m) time, whether
S occurs in T or not. Using a suffix tree, these perform-
ance bounds can actually be achieved. Constructing a
suffix tree for T can be done in O(M) time (39–41).
Given a substring S of length m, all we now need to do
is search for the path S in the tree, starting from the root,
an O(m) operation. This O(M) preprocessing and O(m)
search solution for the substring problem is very
surprising and extremely useful, especially since M may
be huge compared to m.

There are several algorithmic approaches to the con-
struction of a suffix tree for a single string in linear time
(39–41). These methods easily extend, with small modifi-
cations, to represent the suffixes of a collection S1, . . . ,SN

of strings. A generalized suffix tree is a data structure that
contains all suffixes of a set of strings (see ‘Materials and
Methods’ section) and can be built in O(M) time, where
M ¼

PN
i¼1 lengthðSiÞ. A path from the root to a leaf in the

tree represents a suffix. Each leaf of the tree holds infor-
mation about the indices of strings that contain the suffix,
and the starting positions of this suffix within each such
string. Restoring all occurrences of a suffix is thus enabled.
A natural application of generalized suffix trees is finding
substrings that are common to a large number of distinct
strings. This question can arise in many different contexts,
for example in database search, in multiple sequence align-
ment and in motif search. Finding DNA, RNA or protein
substrings that commonly occur in a set of biologically
related sequences help to point out regions or patterns
that may be functional. This problem can be efficiently
solved using a generalized suffix tree (37,38,42).

A useful variant of this problem is finding rank
imbalanced motifs, given a ranked list of sequences
S1, . . . ,SN. Rank imbalanced motifs are substrings that
appear more often at the top of the list compared with
the remainder of the list. This notion of rank imbalanced
motifs was introduced by Zilberstein et al. (43) and by
Eden et al. (20) who described the mHG statistics used
for the assessment of such motifs. A unique feature of
the mHG statistics is that the cutoff between the top
and the rest of the list is determined in a data-driven
manner so as to maximize the motif enrichment. This is
done by computing the motif enrichment over all possible
set partitions and identifying the cut-off at which maximal
statistical significance is observed. Here, we present an
algorithm that uses generalized suffix trees for an efficient

enumeration of motif candidates, which are then assessed
using the mHG statistics. The occurrences of each candi-
date motif in the list are extracted from the extra infor-
mation stored in the leaves of the tree.
In summary, the contribution of this article is:

(1) An efficient algorithm for searching motifs in ranked
lists of sequences. The efficiency of our approach
enables us to search motifs over large alphabets
(such as amino acids) as well as motifs of length 20
or more, all in a reasonable time. Specifically,
searching for DNA motifs of length 4–20 in S.
cerevisiae, over 6000 sequences (each of length
500 bp), takes less than 3min on a standard PC.

(2) An extension of the above approach that enables
searching for variable gap motifs efficiently. We are
not aware of any other method that can efficiently
search variable gap motifs while allowing full flexi-
bility in the gap model. Specifically, searching, in S.
cerevisiae, for VGMs comprising two 4-mer half sites
separated by gaps that form any subset of the lengths
{0, . . . ,10} (�6000 DNA sequences, each of length
500 bp) takes less than 7min on a standard PC.

(3) An efficient implementation of the above approaches.
Software is available at http://bioinfo.cs.technion.ac
.il/people/zohar/DRIMUST-code-VGM/.

(4) Biological results:
(a) Validation of known DNA, RNA and protein

motifs through the analysis of high-throughput
measurement data sets. For example, we validated
the binding motifs of the transcription factors
REB1 (TTACCCG), ABF1 (ATCAN6ACGA)
and GCN4 (TGACTCA) in S. cerevisiae.

(b) Suggested refinement and a potential better char-
acterization of known motifs. For instance, we
found a significant enrichment of the palindromic
motif comprising the half sites GTCA and
TGAC, which are separated by a gap of length
3, 6 or 9 bp, among human estrogen receptor 1
(ESR1) binding sequences.

(c) Hypothesized novel motifs. Interestingly, a
variable gapped motif comprising the dual
CGCG half site was predicted as the
DNA-binding motif of SWI6 in S. cerevisiae. The
gap in this case can be of any length in 1, 3, 5, 8, 9
and 10. Another significant prediction was the
motif HRDLAARN-X12-DFGL-X33-39-SDVW,
found among tyrosine phosphorylated peptides.

In the ‘Materials and Methods’ section, we start with
describing algorithmics for finding fixed structure motifs
in ranked lists. We then extend this framework to effi-
ciently solve the problem of variable gapped motifs.
These algorithms are further applied to biological data
sets. More technical details related to statistics, algorith-
mics and to the actual data analysis are also included in
the ‘Materials and Methods’ section. Short descriptions of
the biological findings are presented in the ‘Results’
section. Finally, we address significance, advantages and
limitations of our approach and biological results in the
‘Discussion’ section.
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MATERIALS AND METHODS

Algorithmics

In this section, we describe our suffix tree approach to motif
searching in the context of large alphabets and of ranked
lists of sequences, based on the mHG statistical model
(all definitions appear later on in this section). We start
with the non-gapped version and then move to the more
complicated-gapped version. We discuss performance in the
context of biologically relevant properties of the input.

DRIMUST—algorithm for the case of a fixed structure
motifs
The algorithm is described in Table 1.

Time complexity. Given a path P of length k in the tree, to
calculate P’s enrichment one first needs to find C(P)—the
list of P’s occurrences. Assuming that P occurs at most
once in a sequence, this takes time proportional to k +
jC(P)j, because walking on the path P in the tree is pro-
portional to k (P’s length), and the size of the subtree
rooted at P is proportional to the number of leaves in
that subtree, which is equal to jC(P)j. Then, the mHG
score is calculated by computing HGT for every member
in C(P), such that each HGT calculation takes O(jC(P)j)
time. In total, calculating P’s enrichment is an O(jC(P)j2).
Therefore, the total complexity of this algorithm is
� ¼

P
P jCðPÞj

2, where P ranges over all paths of length
k in the suffix tree (k1� k� k2).
To evaluate this quantity, we generated 100 lists of se-

quences taken randomly from the S. cerevisiae genome,
each sequence of length 500, and every list contained
1000–2000 sequences. We then estimated � for motifs

(k-mers) of lengths 7, 10 and 13 in all lists. We also
tested actual running time for these data sets and
observed a linear behavior in the total length of the
sequences in the data set (Supplementary Figure S1).
Additionally, practical performance results, for actual bio-
logical data sets, are reported in the ‘Results’ section.

DRIMUST—variable gapped motif search algorithm
The algorithm is described in Table 2.

DRIMUST implementation note regarding length
combinations of the gap. Given a pair of half sites P and
Q, recall the definition of � P,Qð Þ ¼ f�1, . . . , �L P,Qð Þg

� f0, . . . , gmaxg, representing all gaps for which a string
P-N�i-Q, where �i � gmax, occurs in the text. As described
above, for each pair of half sites P and Q, all subsets
� � � P,Qð Þ should be considered as candidates for the
gap, representing all variable gap motifs P-N�-Q. Using
the suffix tree approach, � P,Qð Þ contains only lengths of
gaps that actually connect P and Q in the text, and there-
fore we can avoid searching over all 2gmax+1 possible in-
stantiations of �. In our implementation of DRIMUST, a
single motif P–N�–Q is returned in the output. This is the
most significant one among all motifs of the form P–N�–
Q where � � 0, . . . , gmax

� �
.

Additionally, in order to speed up computations, as a
first step, we test all pairs of half sites P and Q that occur
in the text, but focus only on singletons of lengths for the
gap between the half sites. As a second step, we narrow the
search to the most significant 50 pairs of half sites P and
Q, and only for them we test all 2�(P,Q) length combin-
ations, finding the most significant motif for P,Q. These 50
motifs are then returned as output to the user, assuming

Table 1. DRIMUST – fixed-structure motifs algorithm

Input:
. A ranked list of sequences S1, ::: ,SN

. A range of motif lengths [k1,k2]

. P-value threshold for reporting (�)

Output:
A list of sequence motifs of lengths between k1 and k2 that are rank imbalanced in S1, ::: ,SN at an mHG significance level better than �.

Preprocessing:
Construct a generalized suffix tree for S1, ::: ,SN such that:
. All suffixes of all sequences S1, ::: ,SN are represented by paths from the root to leaves in the tree.
. Each leaf contains information about the occurrences of the corresponding suffix w in S1, ::: ,SN. This information is represented as a list

m1ðwÞ, ::: ,mNðwÞðwÞ. The values mi(w) are the indices, amongst 1, ::: ,N, of the sequences at which w occurs.
/* The construction is implemented using Ukkonen’s algorithm (41) */

Algorithm:
for k= k1 to k2 do:
Traverse the tree to find paths of length k, and for each path P calculate P’s enrichment using the following process:
. Get the ordered list C Pð Þ ¼ fm1ðPÞ < m2ðPÞ < � � �<mNðPÞðPÞg of indices (ranks) of sequences containing P, extracted from the leaves of

the subtree rooted below P.
/*P occurs in the union of the lists of all leaves of that subtree, as it is the prefix of all the suffixes represented by these leaves.
For example, assuming P appears in S8,S14,S31 and S36, then C= f8,14,31,36} */

. Calculate the mHG score for P: mHGðPÞ ¼ min
1�i�NðPÞ

HGT N,NðPÞ,miðPÞ,ið Þ
� �

/* Following the example above and assuming we have 100 sequences in the input: mHGðPÞ ¼ min
HGT 100,4,8,1ð Þ,HGT 100,4,14,2ð Þ,
HGT 100,4,31,3ð Þ,HGT 100,4,36,4ð Þ

� �
:

In this case attained at i=4 where HGT 100,4,36,4ð Þ ¼ 0:015:*/

. Report P if NðPÞ �mHGðPÞ � � holds.
/*P�valueðmHGðPÞÞ � NðPÞ �mHGðPÞ (20) */
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they are sufficiently significant, as determined by the
threshold. This heuristic is optional but is recommended
for large data sets.

Enrichment analysis (using mHG statistics)

An approach has been previously described (20) to
identify the enrichment of a set of genes, A, in a ranked
list of genes, using mHG statistics. Given a total number
of genes N, with B of these genes belonging to A, and n of

these genes being in the target set (e.g. differentially
expressed genes), the probability that b or more genes
from the target set are also in A is given by the tail of a
hypergeometric random variable (HGT):

PðX � bÞ ¼ HGTðN,B, n, bÞ ¼
Xminðn,BÞ

i¼b

n
i

� �
N� n
B� i

� �

N
B

� �

Table 2. DRIMUST – variable gapped motif search algorithm

The algorithm is schematically described in Figure 1.

Input:
. A ranked list of sequences S1, . . . ,SN

. Parameters ½a,gmax,b	 where a represents the length of the first half site, b represents the length of the second half site and gmax represents
the maximum gap.

. P-value threshold for reporting (�)

Output:
A list of sequence motifs of the form H1-N

�-H2, where � is a set of gaps. These reported motifs are rank imbalanced in S1, . . . ,SN at an
mHG significance level better than �.

/* The interpretation of the above motif representation is as follows. A motif is viewed as a set of strings. In this case all strings that start
with H1, then have a wildcard gap of any of the lengths in the set of gaps �, and end with H2. For example, the motif GCC-N1,5-ATG
represents the strings GCCNATG and GCCN5ATG */

Preprocessing:
Construct a generalized suffix tree for S1, . . . ,SN such that:
. All suffixes of all sequences S1, . . . ,SN are represented by paths from the root to leaves in the tree.
. Each leaf contains information about the occurrences of the corresponding suffix w in S1, . . . ,SN. This information is represented as a

list m1(w), . . . ,mN(w)(w), where mi(w) are the indices, amongst 1, . . . ,N, of the sequences at which w occurs.
/* The construction is implemented using Ukkonen’s algorithm (41) */

Algorithm:
Traverse the tree to find paths of length a, and for each path P do:
. Compute the set of all strings �1(P), . . . , �N(P)(P) of length b+gmax that start at the position where P ends in all sequences among

S1, . . . ,SN in which it occurs. This step is implemented by traversing the subtree rooted at P.
/* The strings �i(P) are typically of length b+gmax. When P occurs close to the end of Si, a string of length smaller than b+gmax is taken
into the above set */

. Construct a generalized suffix tree T(P) for �1(P), . . . , �N(P)(P) such that:
# All suffixes of all sequences �1(P), . . . , �N(P)(P) are represented by paths from the root to leaves in the tree.
# Each leaf contains information about the occurrences of the corresponding suffix u in �1(P), . . . , �N(P)(P) as well as the positions of

these occurrences. This information is represented as a list of pairs:

ðm1ðuÞ,t1ðuÞÞ,

ðm2ðuÞ,t2ðuÞÞ,

. . . ,

ðmNðuÞðuÞ,tNðuÞðuÞÞ:

Where m1ðuÞ, . . . ,mNðuÞðuÞ are the indices of the sequences in �1ðPÞ, . . . , �NðPÞðPÞ at which u occurs, and each value ti(u) represents the
starting position of u within �mi(u)

.
. Traverse T(P) at depth b. For each such path Q calculate the enrichment of all possible motifs of the form P-N�-Q, where � is any

subset of f0, ::: , gmaxg, using the following process:
/* This step uses the suffix tree information to avoid searching over all 2gmax+1 possible instantiations of �, leading to improved efficiency
of the algorithm */
# Use the values ti that are in the leaves of the subtree rooted below Q to infer

� P,Qð Þ ¼ f�1, . . . ,�L P,Qð Þg � f0, . . . ,gmaxg, representing all gaps for which a string P-N�i-Q, where �i � gmax, occurs.

/* � P,Qð Þ ¼
S
�

SNðQ�Þ
i¼1

tiðQ�Þ, where a ranges over all substrings for which Qa is a suffix in T(P) */

# For every � � � P,Qð Þ do: /* this is efficient when L P,Qð Þ < gmax+1 */
# Infer an ordered list m1ð�Þ < m2ð�Þ < � � � < mNð�Þð�Þ, which represents all indices in the original list S1, . . . ,SN at which a

string of the form P-N�-Q, where �2�, occurs.
# Use the list m1ð�Þ,m2ð�Þ, . . . ,mNð�Þð�Þ to compute the mHG score for P-N�-Q:

mHGðP,Q,�Þ ¼ min
1�i�Nð�Þ

HGT N,Nð�Þ,mið�Þ,ið Þ
� �

# Report P-N�-Q if Nð�Þ �mHGðP,Q,�Þ � � holds. /*P�valueðmHGðP,Q,�ÞÞ � Nð�Þ �mHGðP,Q,�Þ (20) */
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For a ranked genes list g1, . . . , gN, we define a label
vector � = �1, . . ., �N2f0,1}

N according to the association
of the ranked genes to A, that is, �i = 1 if and only if gi2A.
The mHG score is then defined as:

mHGð�Þ ¼ min
1�n<N

HGTðN,B, n, bnð�ÞÞ

where bnð�Þ ¼
Pn

i¼1 �i.

In other words, the mHG score is the optimal HGT
probability that is found over all possible partitions
induced by the ranking. As such, this score must be cor-
rected for multiple testing. A dynamic programming algo-
rithm for computing the exact p-value of a given mHG
score is described in (20). More specifically, given a ranked
list of genes, a subset A, and a corresponding mHG score
s, the mHG P-value tells us the exact probability of
observing an mHG score s’� s under the null assumption
that all occurrence configurations of A in the ranked list
are equi-probable.
Comment: in practice, DRIMUST uses Stirling’s ap-

proximation to compute all binomial coefficients needed
to assess HGTs. Stirling’s inequality says that:

ffiffiffiffiffiffiffiffi
2�n
p n

e

	 
n
e

1
12n+1 � n! �

ffiffiffiffiffiffiffiffi
2�n
p n

e

	 
n
e

1
12n,

which is tight for large factorials.

Suffix trees

We used Ukkonen’s algorithm for our implementation
of generalized suffix trees (41). An example of such a
tree is shown in Figure 2. For more details on suffix trees
see (37).

Technical details of the biological data analysis

Human TP53 ChIP-chip analysis
We used the list of TP53 high-confidence binding sites
reported by (9), containing 1546 loci in the human
genome, each of length 10 bp. We extracted the sequences
around these loci, taking 200 bpupstreamand200 bpdown-
stream for each reported locus. These sequences were

located at the top of a ranked list, with additional 1546
random sequences taken arbitrarily from the human
genome and having the same lengths appended to the end
of this list. We then searched motifs in the list.

In order to test the significance of all possible substrings
derived from CWWG, we compared the enrichment of
all motifs having the structure CW1W2-gap-CW1W2,
such that W1 and W2 can be A or T and the gap can be
any subset of {0,1, . . . ,10}.

To test which half site obeying the pattern
RRRCWWGYYY was the most enriched, we calculated
the enrichment of all solid motifs that are derived from
this consensus, restricted to WW=AT.

Human estrogen receptor ChIP-chip analysis
We downloaded ESR1 target sequences reported by (44).
Using ChIP-on-chip technique, the authors identified
regions at least 600 bp in length that were enriched in
ChIP samples compared with the controls, in MCF-7
cells. A total of 10 599 regions were predicted at the
P-value cut-off of 10�3. These regions were ranked

Figure 1. Scheme of DRIMUST for VGMs. First, a generalized suffix tree for S1, . . . ,SN is constructed. Then, for every path P at depth a we build
a generalized suffix tree T Pð Þ for all strings of length b+gmax rooted below P. Finally, paths Q at depth b in T Pð Þ are traversed, and all motifs
P�N� �Q, where � � f0, . . . , gmaxg, are evaluated.

Figure 2. A generalized suffix tree for S1=CAGCA and S2=GA.
The characters $1 and $2 are used for marking S1 and S2 ends, respect-
ively. The edges are labeled with substrings of S1 or S2, and the infor-
mation at each leaf indicates both the index of the string that contains
the suffix represented by the path from the root to that leaf, and the
starting position of the suffix within the string.
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according to ESR1 binding P-values. We noticed that se-
quences at the top of the list were longer compared to
sequences at the rest of the list. To get over this length
bias, that may affect motif search, we randomly picked
600 bp from each sequence and only then conducted
motif search.

To compute the differential expression for the genes in
the subset of ESR1 predicted targets, we used the thresh-
old number of mis-classifications (TNoM) score and
P-value previously described (45).

Transcription factor binding sites analysis in S. cerevisiae
Data was taken from (46). We used the data set containing
binding ratios of 203 putative transcription factors in rich
media (YPD) conditions for our analysis. In each of the
experiments, the genes were ranked according to the
TF-binding ratio, and their promoter sequences were
analyzed. We extracted the promoter sequences of S.
cerevisiae genes by taking 500 bases upstream the TSS.
For each transcription factor, we created a ranked list of
targets, considering only genes that had binding ratio
measurement for that TF, and then conducted motif
search.

We compared our two best predictions for each TF with
other reports (20,46). We considered motifs as ‘similar’ if
the optimal number of matches between them was 80% of
the length of the shorter motif. Otherwise, they were con-
sidered as ‘different’.

Heat-shock data analysis in S. cerevisiae
We analyzed gene expression data in S. cerevisiae respond-
ing to heat shock (47). Changes in transcript levels over
eight time points (5, 10, 15, 20, 30, 40, 60 and 80min) after
heat shock were measured for almost every gene. We
defined two disjoint subsets of time points, one contained
the four early time points and the other contained the four
late time points. We calculated the differential expression
between these subsets for every gene, using the TNoM
statistics (45) and then ranked the genes according to
this measurement (in both directions). When genes had
the same TNoM score, we internally ranked them accord-
ing to the difference of their average expression values.
For each ranking, we analyzed both promoter sequences
and 30UTR sequences. Promoter sequences were extracted
by taking 500 bases upstream the TSS. The lengths of
30UTRs were defined according to (48). Although the
30UTR sequences are of variable lengths, there was no sig-
nificant length bias in any of the rankings. We analyzed
3627 promoter sequences and 3177 30UTR sequences.

PUF4-binding data was taken from (2), and enrichment
of the 62 sequences containing the motif was calculated
using the mHG statistics.

RNA-binding motif analysis
We analyzed the data set published by (2). This data set
contains target information for five members of the Puf
family of RNA binding proteins in S. cerevisiae. Using
DNA microarrays the authors identified associated
mRNAs. In five different experiments, one for each
RBP, we ranked the 30UTR sequences of S. cerevisiae
genes according to the mean binding ratio and then

conducted motif search. The lengths of 30UTRs were
defined according to (48). Each of the five lists contained
�5000 sequences (minimum 4997 and maximum 5041).
Although the 30UTR sequences are of variable lengths,
there was no significant length bias in any of the
experiments.
We also analyzed targets of PUM1, a human member of

the Pumilio family. The list of PUM1 targets in HeLa S3
cells was obtained from (3) and contained 1336 sequences.
The data set includes gene information and numerical data
related to the measured affinity of PUM1 and its potential
targets (SAM score). We ranked the 30UTR sequences ac-
cording to this quantity. Here also there was not a length
bias problem.

Protein-motif analysis
We downloaded human phosphorylation data from
Phospho.ELM database (49). In three different experi-
ments, one for each phosphorylation type (serine, threo-
nine or tyrosine), each protein sequence was considered
once. From each sequence, we picked a substring
starting at 50 amino acids upstream the minimal site and
extending to 50 amino acids downstream the maximal site.
These substrings were located at the top of a ranked list,
and we appended to them a set of random sequences taken
arbitrarily from the human proteome and having the same
lengths. We then conducted motif search. Although the
amino acid sequences are of variable lengths, there was
no significant length bias in any of the experiments. The
serine phosphorylation list contained 7752 sequences in
total and the tyrosine phosphorylation list contained
2320 sequences.
As random control, we generated a list of sequences

containing the same amino acid content while preserving
the RS di-residual density as in the original list. Given a
sequence S in the original list, we first counted the number
of RS pairs in S, denoted as q. We then randomly placed q
RS pairs in the shuffled sequence and dispersed the rest of
the amino acids in S randomly in the remaining positions.
In the last step, we eliminated randomizations that placed
‘S’ after ‘R’ as they would have changed the RS density.

Motif refinement as PWM

Motifs produced as output by DRIMUST are exact
words. As a refinement, we implemented a procedure
that returns PWMs for the two halves of a given
variable gap motif. This extension to DRIMUST takes
four parameters as input:

(1) The ranked list of sequences
(2) A variable gap motif produced as output by

DRIMUST
(3) n*—the cut-off in the list at which the motif enrich-

ment is maximized. This parameter is part of the
DRIMUST output (together with the motif).

(4) d—a Hamming distance threshold

The procedure returns a PWM for each half of the motif
by considering all occurrences of variants of the motif in
the top n* sequences in the list, when allowing up to d
mismatches in total in the motif halves.
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Implementation and availability

We provide an efficient implementation of the algorithms
described above in Java. Our application takes as input
ranked lists of sequences and returns significant variable
gap motifs. It can be freely downloaded from http://
bioinfo.cs.technion.ac.il/people/zohar/DRIMUST-code-
VGM/ (suitable for all operating systems). The implemen-
tation of the procedure that returns PWMs given variable
gap motif is also available for download from the above
location.

RESULTS

We applied DRIMUST to analyze various data sets by
searching for variable gap motifs composed of two
half-sites of length 4, and separated by gaps that form
any subset of the lengths {0, . . . ,10}. We describe our
findings in this section. For each result, we report an
mHG P-value as well as a Bonferroni corrected P-value,
addressing the size of the motif search space.

Motif discovery in human TP53 ChIP-chip data

To test the effectiveness of our algorithm, we used it for
the identification of TP53 (also known as p53) binding
motif in humans by applying it to the Smeenk et al. (9)
data set. Using a genome-wide ChIP-on-chip approach,
the authors have identified 1546 high-confidence binding
sites of TP53. We placed these target sequences at the top
of a ranked list, with additional 1546 random sequences
(taken arbitrarily from the human genome and having the
same length) appended to the end of this list. The
complete list served as input to DRIMUST. The most
enriched motif found in the output contained the two
identical half-sites CATG, separated by a gap of length
6 or 7 (i.e. CATG-N6,7-CATG; P-value� 1.15� 10�67;
Corrected P-value� 1.54� 10�59). Furthermore, evalu-
ation of the fixed gap motifs from the pattern
CATG-Nl-CATG, where 0� l� 10, showed that
CATG-N6-CATG was the most enriched among them
(P-value� 2.33� 10�64; Figure 3A).

The above is consistent with the literature consensus
motif which consists of two copies of the half-site
RRRCWWGYYY separated by a spacer of 0–13 bp
(50). A gap of length 0 is equivalent to the motif
RRRCWWGYYYRRRCWWGYYY which is consistent
with a spacer of 6 bp between the two half sites CWWG.
Among all possible half-sites derived from CWWG,
CATG was found to be the most statistically enriched in
the data we analyzed (P-value� 1.15� 10�67, versus
P-value of CAAG� 2.45� 10�14; P-value of
CTTG� 5.25� 10�9; P-value of CTAG� 4.74� 10�4).
This is consistent with the observation that high-affinity
sites contain the CATG sequence at the centre of both
half-sites (51,52). Additionally, we observed that the
most enriched half site derived from RRRCWWGYYY
was GGGCATGTCT (P-value� 2.89� 10�8).
Due to the dichotomic nature of the data, the algorithm

actually cuts at a fixed place, and a hypergeometric (HG)
test at position 1546 would have yielded highly similar
results, as would be expected. It should be noted that
the TP53 analysis took 3min on a standard PC.

Motif discovery in human estrogen receptor 1
ChIP-chip data

We further applied our algorithm on ESR1 target se-
quences, using data collected by Carroll et al. (44). The
authors mapped ESR1-binding sites on a genome-wide
scale in breast cancer MCF-7 cells, using ChIP-on-chip
technology. The list given as input to our method con-
tained the entire data set of sequences (N=10599), and
they were ranked according to ESR1 binding P-values as
defined by (44). This mode of analysis, searching motifs in
ranked lists, is the preferred mode for DRIMUST. The
most enriched motif found in the output was
GTCA-N3,6,9-TGAC; P-value� 1.13� 10�20; Corrected
P-value� 1.52� 10�12). This motif is consistent with the
known ESR1-binding motif AGGTCA-N3-TGACCT
(44), and with the observation that the protein binds as
a symmetrical dimer to its palindromic-binding site (53).
Our findings, however, expand the known fixed spacer

Figure 3. TP53 and ESR1 motif analysis. (A) Eleven motifs having the pattern CATG-Nl-CATG, where 0� l� 10, were tested (dark bars) and
compared to the motif CATG-N6,7-CATG (rightmost bar), for TP53-binding data. (B) Eleven motifs having the pattern GTCA-Nl-TGAC, where
0� l� 10, were tested (dark bars) and compared to the motif GTCA-N3,6,9-TGAC (rightmost bar), for ESR1-binding data.
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length, suggesting a stronger variable gap motif. We then
evaluated the fixed gap motifs GTCA-Nl-TGAC, where
0� l� 10, and observed that the most enriched variant
was indeed GTCA-N3-TGAC (P-value� 1.12� 10�18;
Figure 3B). Moreover, other variants of the variable gap
motif were similarly as strong, such as GTCA-N0,3,6,9-
TGAC (P-value� 1.56� 10�20), GTCA-N3,9-TGAC
(P-value� 4.40� 10�20), and GTCA-N0,3,9-TGAC
(P-value� 8.58� 10�20).

The mHG statistics used by our method provides add-
itional information about protein targets. For each motif,
it returns as output a cut-off in the list such that the motif
is enriched in the subset of sequences located above the
cut-off compared to the subset of sequences located below
it. This number is denoted as n* and can be utilized to
predict the targets of the tested protein, by selecting the
motif-containing sequences ranked higher than n*.
Applying this approach to ESR1 yields n*=5083 (out
of 10 599). Amongst the top 5083 sequences, we find 577
that contain the motif GTCA-N3,6,9-TGAC. As validation
for this approach, we used publicly available gene expres-
sion data (54) containing mRNA expression profiles from
100 primary human breast tumors. We ranked the
mRNAs according to their differential expression in
samples with high-ESR1 mRNA levels versus samples
where ESR1 mRNA levels were low. We found that the

subset of ESR1 predicted targets (577 genes defined as
above) was enriched among the set of genes whose expres-
sion is positively correlated with ESR1 expression
(P-value� 4.33� 10�6).

Motif discovery in S. cerevisiae transcription factor
binding sites

We next applied our method to the Harbison ChIP-chip
data set (46), reporting measurements in 203 transcription
factor binding experiments. In each of the ChIP-chip ex-
periments, promoter sequences were ranked according to
the transcription factor binding signal. Each transcription
factor thus had its unique ranked list of genes, containing
6029 sequences on average. Every ranked list was used as
input to our method, which searched for fixed structure
motifs of lengths 6–10, and for variable gapped motifs.
The motifs found for the Harbison data set are
summarized in Supplementary Table S1. We compared
our predictions with those reported in (46). The results
of this comparison are summarized in Figure 4 and in
Supplementary Table S2.
Notably, the most significant variable gap motif

was found for the protein ABF1. We found two equally
strong motifs for ABF1: TCGT-N6-TGAT (P-value�
3.53� 10�63; Corrected P-value� 4.74� 10�55) and

Figure 4. Comparison between DRIMUST predictions and other predictions (46). Overall, our method identified significant motifs for all 203 unique
transcription factors tested with P-value� 10�5. Comparing them to the motifs reported in (46) revealed that out of 203 transcription factors,
DRIMUST and the other applications found similar motifs for 22 TFs. There were 80 TFs for which DRIMUST predicted different motifs, and 101
for which DRIMUST identified a motif where the other applications did not. Examples for each case are indicated in the figure. We note that in the
green set and the red set our predictions for 12/80 and 11/101 TFs are consistent with (20), respectively. Motifs of TFs marked with asterisk are also
identified by (20).

Nucleic Acids Research, 2012 9

http://nar.oxfordjournals.org/cgi/content/full/gks206/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks206/DC1


ATCA-N6-ACGA (P-value� 7.23� 10�63; Corrected
P-value� 10�54), both are fixed gap motifs. Aligning
these motifs may yield the consensus motif
ATCRTN5AYGAT, which was also enriched (P-value�
1.53� 10�16). The second motif (ATCA-N6-ACGA) is
consistent with the literature motif RTCRYN5ACG
(55). We further tested the enrichment of all eight
variants derived from the latter consensus and found
that the motif ATCACN5ACG was the most significant
one (P-value� 2.58� 10�75; the results are summarized in
Figure 5A). Apparently, adenosine is preferred over
guanine at the first and the second positions of purines
in the motif.
Interestingly, there are transcription factors for which

very similar motifs were found by DRIMUST. One
example is GAT3, YAP5 and MSN4 that share a
variable gap motif, composed of the half sites GCGG
and ACGA separated with a gap of length 7 or 10 nucleo-
tides (GAT3: P-value� 2.49� 10�34; YAP5:
P-value� 5.48� 10�34; MSN4: P-value� 8.63� 10�17).
Comparing the variable gap in this motif to fixed gaps
for GAT3 is depicted in Figure 5B, demonstrating a

significant preference for the variable gap. Another
example is RGM1, TOS8, CRZ1 and MAL13 for which
the most enriched motif was CCTCGACTAA (RGM1:
P-value� 6.3� 10�28; TOS8: P-value� 1.6� 10�16;
CRZ1: P-value� 3.7� 10�16; MAL13: P-value� 2.1�
10�14). In addition to the above, very similar motifs
were also predicted for PDC2, HAL9 and TEC1—TGT
TGGAATA for PDC1 and TEC1 (P-values� 3.5� 10�38

and 1.6� 10�16, respectively), and TGTTNGAAT for
HAL9 (P-value� 4.92� 10�21). It should be noted that
the predictions in (46) are different or do not exist.

Furthermore, a variable gap motif was found to be
strongly enriched among SWI6 targets. This motif
comprised two copies of CGCG, separated by the spacer
length subset {1, 3, 5, 8, 9, 10} (P-value� 2.76� 10�25;
Corrected P-value� 3.7� 10�17). This motif differs
from the motifs CGCGAAA and CNCGAAA reported
in (46). Moreover, testing the fixed gap motifs from
the pattern CGCG-Nl-CGCG, where 0� l� 10, for
SWI6, yielded significantly weaker enrichments, support-
ing a preference for a variable gap motif, in this case
(Figure 5C).

Figure 5. ABF1, GAT3 and SWI6 motif analysis. (A) Variants of the ABF1 consensus sequence RTCRYN5ACG were evaluated and their signifi-
cance P-values are indicated. (B) Eleven motifs having the pattern GCGG-Nl-ACGA, where 0� l� 10, were tested (dark bars) and compared to the
motif GCGG-N7,10-ACGA (rightmost bar), for GAT3-binding data. (C) Eleven motifs having the pattern CGCG-Nl-CGCG, where 0� l� 10, were
tested (dark bars) and compared to the motif CGCG-N1,3,5,8,9,10-CGCG (rightmost bar), for SWI6-binding data.
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Note that running the complete analysis, as described
above, on the Harbison et al. data set, took 30 h on a
standard PC.

Motif discovery in S. cerevisiae heat-shock data—DNA
and RNA motifs

We analyzed gene expression data in S. cerevisiae respond-
ing to heat shock (47). The data includes information
about changes in transcript levels over eight time points
after heat shock for almost every S. cerevisiae gene,
measured using DNA microarrays. For each gene, we
calculated the differential expression when comparing
the four early time points with the four late time
points, using the TNoM statistics (45). We then ranked
the genes accordingly, in both directions. For each
ranking, we analyzed both promoter sequences and
30UTR sequences and used DRIMUST to search for
variable gap motifs.

The motif AAAATTTT was found to be enriched
among promoter sequences of genes increasing after heat
shock (P-value� 3.40� 10�31; Corrected P-value�
4.56� 10�23). This motif has been previously suggested
to bring regulatory elements close together, and thus
enhance the interactions of transcription factors that
bind DNA (56). Another motif, GCGA-N0,4-TGAG was
also significantly enriched (P-value� 3.22� 10�25;
Corrected P-value� 4.32� 10�17).

Additionally, a motif which is similar to PUF4 recogni-
tion site was found to be enriched among 30UTR se-
quences of genes increasing after heat shock. The motif
UGUA-N1,2,5,6-AUUA was the most significant motif in
the output (P-value� 9.93� 10�10; Corrected P-value�
0.08). When testing fixed gap motifs from the pattern
UGUA-Nl-AUUA, where 0� l� 10, the most significant
enrichment was attained at l=1, with P-value=
7.5� 10�6. This is also consistent with the literature con-
sensus of l=1 for PUF4. Our variable gap motif found

here is significantly more enriched. Moreover, mHG cuts
the ranked list after 415 sequences, out of which 62
contain the motif. We next found that these 62 genes are
enriched among PUF4 high-affinity targets (2) (P-
value� 1.71� 10�13). Additionally, PUF4 itself increases
after heat shock according to data. This may point at a
positive regulation of these genes by PUF4 triggered by
heat shock. We also found another VGM, the motif
UUCU-N3,4,5,7,9,10-UUUA, to be enriched among genes
decreasing after heat shock (P-value� 2.35� 10�9;
Corrected P-value� 0.19).
It should be noted that the analysis of the heat-shock

data took 5min (for both the 30UTRs and the promoters)
on a standard PC.

RNA binding motifs

We next applied DRIMUST on mRNA sequences
targeted by RNA binding proteins of the Pumilio family
in S. cerevisiae (2), in five different experiments. Input
consisted of the list of S. cerevisiae 30UTRs ranked accord-
ing to PUF1, PUF2, PUF3, PUF4 and PUF5 binding
affinity, respectively. The results are summarized in
Figure 6A.
We note that PUF1 and PUF2 have similar motifs,

comprising the dual UAAU sequence, as has been previ-
ously shown (5). The half sites are separated with a
variable gap spacer, including a gap of length 3.
Though the most significant gap is not 3, the motif
UAAU-N3-UAAU is almost as enriched as the motifs
shown in Figure 6A (PUF1: P-value� 3� 10�14; PUF2:
P-value� 10�48), and therefore this may not be an
instance of significant variable gap motif.
The motifs found for PUF3 and PUF4 are fixed gap (U

GUAAAUA and UGUANAUUA, respectively), and
they are consistent with the motifs found by Gerber
et al. (2). As for PUF5, our results are less consistent

Figure 6. Motifs found to be enriched among high-affinity targets of Puf proteins. (A) The motifs found for PUF1, PUF2, PUF3, PUF4 and PUF5,
together with their statistical significance, are shown. (B) A Shannon logo for the first half of the variable gap motif found for PUF3. (C) A Shannon
logo for the second half of PUF3 motif (the logos are drawn using WebLogo).
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with the literature and suggest UGUANUAUA as a
potential-binding site for this RNA-binding protein.
An extension to DRIMUST, also available for

download, enables refinement of the exact motif output
obtained from DRIMUST. It takes as input an
exact-word variable gap motif that was produced as
output by DRIMUST, and returns two PWMs—one for
the first half of the motif and one for its second half (see
‘Materials and Methods’ section). For example, applying
this extension to the motif UGUAAAUA (which is
equivalent to UGUA-N0-AAUA) found for PUF3 yields
PWMs that correspond to the Shannon logos presented in
Figure 6B and C.
To further demonstrate the power of the mHG statis-

tics, we shuffled the ranking of PUF3 target sequences
and then conducted motif search. In other words, as
control, the target sequences were sorted randomly,
with no association to PUF3 binding. We repeated this
control for 100 times, and out of these 100 control experi-
ments the most significant result was not better than
5.06� 10�11 (as opposed to 4.18� 10�110 found for the
original ranking).
Additionally, we applied DRIMUST to targets of

PUM1, a human member of the Pumilio family [data
was taken from (3)]. The targets were ranked according
to PUM1-binding affinity and used as input to
DRIMUST. We found that the motif UGUA-N0,3-
AAUA was the most significant (P-value� 5.14� 10-10;
Corrected P-value� 0.07). It resembles the motif UGUA
AAUA which was found for PUF3 targets, and as a
matter of fact the latter string is highly enriched among
PUM1 targets as well (P-value� 3.5� 10�9), consistent
with the validated binding site for PUM1 (3,4).
The analysis of all Puf proteins took 15min on a

standard PC.

Protein motifs

We finally applied DRIMUST to protein sequences,
studying amino acid motifs enriched among human
kinase substrates. Phosphorylation sites were taken from
Phospho.ELM database (49), which stores serine, threo-
nine and tyrosine phosphorylation data in a large set of
species. We placed sequences containing phosphorylation
sites of a specific type (serine, threonine or tyrosine) at the
top of a ranked list, and appended to them a set of
random sequences taken at random from the human
proteome and having the same lengths. The complete list
was used as DRIMUST input, seeking variable gapped
motifs.
The most enriched motif found among serine kinase

substrates was RSRS-N0,2,3,6,8,9-RSRS (P-value� 6.24�
10�9; Corrected P-value� 0.25). To eliminate artifacts
that may lead to the enrichment of this motif, we further
tested whether there was RS di-residual density bias in
the data set. We found that phosphorylated sequences
tend to have greater RS di-residual density than
non-phosphorylated sequences. Specifically, we sorted
the sequences according to RS di-residual densities in des-
cending order (greater RS density values are at the top and
lower values are further down). We then observed that

among the higher 5000 values (out of 7752), 3195 were
serine phosphorylated sequences and only 1805 were
non-phosphorylated sequences (mHG P-value�
6.2� 10�244 and Supplementary Figure S2). To test
whether the motif is a result of this bias, we generated
sequences containing the same amino acid content while
preserving the same RS di-residual density (for details, see
‘Materials and Methods’ section), and then conducted
motif search. We did not observe any motif at
P-value� 10�5, and specifically did not find the above
motif. Therefore, the motif composed of the dual
sequence RSRS is not likely to result solely from the RS
di-residual density bias. Furthermore, we also analyzed
serine kinase substrates in Mus musculus, and did not
find any motif at P-value� 10�5. In mouse, we also
found a significant RS di-residual density bias (mHG
P-value� 10�244), supporting that RS di-residual density
bias itself cannot explain the enrichment of the motif
RSRS-gap-RSRS among serine phosphorylated sequences
in humans. Moreover, searching variable gapped motifs
comprising half-sites of lengths 6 and 4 (and vice versa)
in humans, where we found the above motif, did not yield
any result at P-value� 10�5. This means that the gap is
not predominantly RS. We conclude that this motif is
directly related to serine phosphorylation and not to RS
di-residual density bias.

The motif is probably related to RS domains, which are
rich in arginine-serine repeats and are known to be sub-
jected to serine phosphorylation (57,58). For example,
human SR proteins are known to contain RS domain at
their carboxyl terminus that is involved in protein–protein
interaction, and at least one amino-terminal RNA-binding
domain that provides RNA-binding specificity (59). Since
there are about nine known SR proteins in humans (59)
and the motif above was found among 43 serine-
phosphorylated proteins (out of 48 occurrences in the
complete list), it is likely that not all of them are SR
proteins. Therefore, we propose that the enrichment of
the motif above points at a general mechanism rather
than enrichment resulting from SR proteins influence on
the analysis.

It is interesting to note that all motifs having the struc-
ture RSRS-Nl-RSRS, where 0� l� 10, were not enriched
at a threshold of 10�4 (the default in our software), and
therefore taking a greedy approach that filters half-sites by
testing only fixed gap motifs would have missed this
variable gap motif (Figure 7A).

As for threonine phosphorylated sequences, we did not
observe any motif at P-value� 10�5. On the other hand,
we found several interesting motifs around tyrosine phos-
phorylation sites. A non-gapped motif, HRDLAARN,
was significantly enriched in humans (P-value�
3.17� 10�13; Corrected P-value� 2.55� 10�6) and in
M. musculus (P-value� 1.5� 10�6). Further search for
4-mers enriched around tyrosine phosphorylation sites
yielded three highly significant motifs: DFGL
(P-value� 5.1� 10�17), HRDL (P-value� 7.7� 10�17)
and SDVW (P-value� 2.5� 10�16). Some of these motifs
are known to be related to tyrosine kinase susceptibility.
For example, the catalytic domains of protein-tyrosine
kinases, such as EGFR, FGFR3, CSK, MATK (also
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known as CHK) and others contain the consensus
sequence HRDLAARN. Interestingly, this sequence is
also followed by the conserved sequence DFG (34–36)
which is important for ATP coordination (35).

We tested the combination of the three motifs
HRDLAARN, DFGL and SDVW that we found, and
identified a strikingly evident pattern. Out of 41
phosphorylated sequences that contained HRDLAARN,
32 contained both DFGL and SDVW. Moreover, in all
these 32 cases, DFGL appeared exactly 12 amino acids
after HRDLAARN, and SDVW appeared between 33–
39 amino acids after DFGL (Figure 7B). This motif was
significantly enriched in humans (P-value� 1.9� 10�10)
and also in M. musculus (P-value� 1.1� 10�4). This, to
the best of our knowledge, is a novel discovery.

The above analysis took 4min on a standard PC.

DISCUSSION

In this article, we describe an efficient statistical and algo-
rithmic approach to searching motifs in ranked list of se-
quences. Our method, implemented in DRIMUST, has
several advantages over existing methods. First, many
other approaches exhaustively search over motif spaces
and therefore, cannot handle gapped motifs and motifs
over large alphabets. Furthermore, we search motifs in
ranked lists and not in fixed sets of sequences as is the
case for many other methods. To the best of our know-
ledge, DRIMUST is unique in combining an efficient
search with a ranked list approach and rigorous P-value
estimation. It is also unique in efficiently addressing
variable gap motifs under a definition that allows full flexi-
bility of the gap.

Our approach to overcoming the computational chal-
lenges associated with large motif search spaces is based
on using suffix trees, to restrict our attention to motifs that
actually occur in the input list of sequences. An alternative
approach could be based on the use of a hash table.
Taking this approach, however, will entail running the
search for a fixed motif length k. To span a range of
lengths k1� k� k2, as is done by DRIMUST, one would
need to generate a separate hash table for each k.
Therefore, a suffix tree approach is far more efficient in
this case. In addition, the hash table approach falls short
of solving the variable gap motif problem which is enabled
through the use of suffix trees in DRIMUST.
One of the standard motif search tools used by the com-

munity is MEME (15). As opposed to DRIMUST focus
on discovering motifs in ranked lists, MEME uses a fixed
set approach. Moreover, it limits the input to only 60 000
characters. When we ran the phosphorylation motif search
analysis described in the ‘Results’ section on MEME’s
service (60), as the full input would have been too large
(the tyrosine data set is 200 000 characters), we used 300
sequences as input. MEME took more than an hour to
run the analysis. The results are depicted in
Supplementary Figure S3 and are consistent with
DRIMUST predictions, however, we note that the
variable gap nature of the motifs we found to be
associated with HRDLAARN is not discovered by
MEME. Additionally, we ran MEME on �200 sequences
of the serine data set, yielding no significant findings.
Another advantage of DRIMUST over MEME is that it
provides a tight upper bound on the P-value, based on the
mHG model, while MEME’s output includes an e-value
which is not as rigorously associated with a statistical
model.

Figure 7. Phosphorylation motif analysis. (A) Eleven motifs having the pattern RSRS-Nl-RSRS, where 0� l� 10, were tested (blue bars) and
compared to the motif RSRS-N0,2,3,6,8,9-RSRS (red bar), for serine phosphorylation data. (B) There are 32 sequences containing the motif
HRDLAARN-X12-DFGL-X33-39-SDVW within tyrosine phosphorylated sequences in humans. The occurrences of HRDLAARN are marked in
red, those of DFGL are marked in blue, and of SDVW in green.
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In 2007, our group developed the first mHG approach
to motifs in ranked lists. This was implemented as the
DRIM algorithm (20). Building on the DRIM statistical
approach, the current work represents significant progress
over DRIM:

(1) Improved computational efficiency enabled by using
suffix trees

(2) Thanks to this improvement, we can address large
alphabets, long motifs and, most notably, a new
class of variable gap motifs (VGMs)

One apparent limitation of the current implementation
of DRIMUST is that the output half-sites are exact
motifs. That is, they are words over the alphabet of the
input sequences, allowing no flexibility or weighting. Our
output can be viewed as the starting point for extending
the motifs using more flexible motif representation
approaches for selected top results. In practice, for this
extension step, we currently employ ad hoc and manual
analysis. In this article, we used a simple extension
mechanism of a motif in the DRIMUST output by
considering its variants that occur at the top of the
ranked list for creating a PWM for the motif. The
implementation of this extension is also available for
download. In the future, we intend to further develop al-
gorithmic approaches to this phase. For example, extend
motifs using IUPAC or PWMs. The IUPAC extension
task is amenable to modifications of the suffix tree
approach.
We note that all P-values reported by DRIMUST are

not corrected for the size of the motif search space, which
should be handled by the user. Findings presented in this
article remain significant after correction.
In addition to the computational contribution of this

article, we present analysis results of biological importance:

(1) We identify CATG as the strongest TP53 half-site.
While the pair AT was shown to be the best instance
of WW in the known consensus CWWG, this was
done in controlled synthetic experiments. Our results
which validate this recently established preference
were obtained using high-throughput measurement
data. Consistent with literature, we found a spacer
of 6 bp to yield significant results.

(2) We observe GTCA-N3,6,9-TGAC as the strongest
binding site for ESR1. The existing literature consen-
sus, to the best of our knowledge, is GTCA-N3-TGAC.
This newly hypothesized refinement of the ESR1
binding site, inferred from high-throughput measure-
ment data, demonstrates the utility of variable gap
motif search. The data analyzed to yield this finding
consisted over 10 000 human DNA sequences, each of
length 600 bp—a size which is difficult to handle by
most state of the art tools.

(3) In analyzing Harbison et al. data, we validate some
existing findings and also suggest some novel motifs.
Specifically, we find CGCG-N1,3,5,8,9,10-CGCG to be
the most significant variable gap motif for SWI6.
Indeed, this motif is much stronger than all the
underlying fixed gap motifs (Figure 5C).

(4) We suggest PUF4 involvement in S. cerevisiae
heat-shock response through motif search analysis
in 30UTRs.

(5) We suggest HRDLAARN-X12-DFGL-X33-39-SDVW
as a significant motif related to potential tyrosine
phosphorylation in humans (and in mice).
HRDLAARN, the first part of this motif, is known
to be related to tyrosine phosphorylation. Our
analysis gives rise to a significant refinement.

This work is the first to perform a systematic analysis of
variable gapped motifs in biological data sets. We have
found variable gapped motifs to be more significant in a
handful of cases and therefore reach the preliminary con-
clusion, consistent with Reid et al. (33), that they are im-
portant but not extremely widespread.

In summary, we present efficient and effective algorith-
mics for motif search and demonstrate its utility in biolo-
gical data sets. In the future, we hope to further expand
findings driven by this approach, through usage by us as
well as by others in the community.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–2 and Supplementary Figures
1–3.
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