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ABSTRACT

Cellular regulation mechanisms that involve proteins
and other active molecules interacting with specific
targets often involve the recognition of sequence
patterns. Short sequence elements on DNA, RNA
and proteins play a central role in mediating such
molecular recognition events. Studies that focus
on measuring and investigating sequence-based
recognition processes make use of statistical and
computational tools that support the identification
and understanding of sequence motifs. We present
a new web application, named DRIMust, freely ac-
cessible through the website http://drimust.
technion.ac.il for de novo motif discovery services.
The DRIMust algorithm is based on the minimum
hypergeometric statistical framework and uses
suffix trees for an efficient enumeration of motif
candidates. DRIMust takes as input ranked lists of
sequences in FASTA format and returns motifs that
are over-represented at the top of the list, where the
determination of the threshold that defines top is
data driven. The resulting motifs are presented indi-
vidually with an accurate P-value indication and as a
Position Specific Scoring Matrix. Comparing
DRIMust with other state-of-the-art tools demon-
strated significant advantage to DRIMust, both in
result accuracy and in short running times. Overall,
DRIMust is unique in combining efficient search on
large ranked lists with rigorous P-value assessment
for the detected motifs.

INTRODUCTION

The study of sequence elements that enable molecular rec-
ognition in a variety of cellular processes is an important
component in improving our understanding of regulation

in living cells. Transcription factor (TF) activity, for
example, often depends on the identification of specific
targets using molecular pattern recognition mechanisms
that involve sequence motifs. Sequence recognition plays
a role in other molecular levels, as well. The occurrence of
short binding motifs in RNA molecules plays a central
role in enabling controlled regulation by RNA-binding
proteins (RBPs) and by microRNAs. For example, the
Pumilio family proteins regulate target messenger RNAs
by recognizing and binding sequence elements in 30

untranslated regions (UTRs) (1). Protein modification
and protein–protein interactions are also potentially
driven by mechanisms that involve specific protein
sequence recognition such as the phosphate-binding
loop (2,3).
Studies using techniques such as ChIP-chip (4), ChIP-

PET (5), ChIP-seq (6) and ChIP-exo (7) lead to genome-
wide measurement data pertaining to the TF binding
affinity of various genomic regions, obtained in actual
samples and in several conditions. Similarly, messenger
RNA targets of RBPs are studied using techniques like
RNA immunoprecipitation (RIP)-chip (8), crosslinking
and immunoprecipitation (CLIP) (9) and photo
activatable-ribonucleoside-enhanced crosslinking and
immunoprecipitation (PAR-CLIP) (10). Stable isotope
labeling by/with amino acids in cell culture (SILAC) (11)
and other proteomic techniques can be used to character-
ize the effect of amino acid sequences on protein function.
Computational tools and approaches to motif discovery
form part of the data analysis workflow that is used to
extract knowledge and understanding from this type of
studies. Motif discovery has attracted much research
interest in recent years, resulting in more than a hundred
different tools for motif discovery (12,13). A large subset
of motif finders such as Multiple EM for Motif Elicitation
(MEME) (14), NMica (15), AlignACE (16), MDscan (17),
Yeast Motif Finder (YMF) (18), Gapless Local Alignment
of Multiple sequences (19) and Suite for Computational
identification Of Promoter Elements (SCOPE) (20) fit
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position weight matrices to the sequence data. Recently,
efficient motif discovery tools were designed to handle
large sets of data arising from the aforementioned high-
throughput measurement techniques, as for example
MEME-ChIP (21), Discriminative Regular Expression
Motif Elicitation (DREME) (22) and XXmotif (23).
Most techniques are designed to find motifs by seeking
elements that occur more often than expected in a set of
sequences. Many of these techniques compare a target set
with a background set, such as in XXmotif (23). It is often
the case, however, in biological measurement data, that
results are given as a ranked list of quantities. Such is
the case for data generated by ChIP-seq or CLIP, for
example. Statistical approaches such as Gene Set
Enrichment Analysis (24) and minimum hypergeometric
(mHG) (25–28) address motif enrichment in ranked lists of
elements. We have previously developed DRIM (25), a
motif-finding approach that exploits the ranking derived
from experimental measurements to discover k-mers that
are rank imbalanced in the input list based on the mHG
statistics. The search for rank imbalanced motifs allows
for much more flexibility and is therefore more compatible
with the character of the actual measurement results. The
mHG model allows for a rigorous statistical assessment of
the results without the need to run simulations. To
overcome the computational challenges associated with
large motif searches, we have recently developed the
DRIMust algorithm (29). The algorithm is based on
suffix trees, an approach also suggested in (30–32).
DRIMust allows for an efficient enumeration of motif
candidates, which are then assessed using the mHG stat-
istics. Tree-based approaches have been previously effi-
ciently used in other motif search algorithms, such as
the beam search algorithm, which is an enumerative algo-
rithm for identifying enriched cis-regulatory elements in
sets of commonly regulated genes (33).
In this work, we introduce the DRIMust web server and

describe its utility in supporting the search of rank
imbalanced motifs. DRIMust takes as input ranked lists
of sequences in FASTA format and returns motifs that are
over-represented at the top of the list, where the determin-
ation of the threshold that defines top is data driven. In
cases where sequence ranking is not relevant or not avail-
able, DRIMust allows the user to upload positive and
negative sets of sequences. In the latter case, DRIMust
will search for enriched motifs in the positive set using
the negative set as the background. DRIMust is efficient
and thus allows searching in large data sets, searching for
long motifs as well as searching motifs over large alpha-
bets in short running times. The resulting motifs are pre-
sented as a Position Specific Scoring Matrix (PSSM) in a
graphical WebLogo format; the matrix can also be down-
loaded as a text file. For every motif, a P-value is
indicated. DRIMust is freely accessible through the
website http://drimust.technion.ac.il/.

DRIMUST METHODOLOGY

The DRIMust approach seeks rank imbalanced motifs,
given a ranked list of sequences S1, ::: ,SN. Rank

imbalanced motifs are substrings that appear more often
at the top of the list compared with the remainder of the
list. Eden et al. (25) described the mHG statistics used for
the assessment of rank imbalanced motifs. A unique
feature of the mHG statistics is that the cutoff between
the top and the rest of the list is determined in a data-
driven manner so as to maximize motif enrichment. This is
done by computing the motif enrichment over all possible
set partitions and identifying the cutoff at which maximal
statistical significance is observed. The algorithmic
approach of DRIMust is based on suffix trees, allowing
efficient enumeration of the motif search space (29).

Enrichment analysis using mHG statistics

We have previously described an algorithm to identify the
enrichment of a set of genes, A, in a ranked list of genes,
using mHG statistics (25). Given a total number of genes
N, with B of these genes belonging to A, and n of these
genes being in the target set (e.g. differentially expressed
genes), the probability that b or more genes from the
target set are also in A is given by the tail of a
hypergeometric random variable (HGT):

PðX � bÞ ¼ HGTðN,B, n, bÞ ¼
Xminðn,BÞ

i¼b

n
i

� �
N� n
B� i

� �

N
B

� �

For a ranked genes list g1, ::: , gN, we define a label

vector � ¼ �1, ::: , �N 2 f0, 1gN according to the association
of the ranked genes to A, that is, �i ¼ 1 if and only if
gi 2 A. The mHG score is then defined as

mHGð�Þ ¼ min
1�n<N

HGTðN,B, n, bnð�ÞÞ, where bnð�Þ ¼
Pn
i¼1

�i.

In other words, the mHG score is the optimal HGT
probability that is found over all possible partitions
induced by the ranking. As such, this score must be cor-
rected for multiple testing. A dynamic programming algo-
rithm for computing the exact P-value of a given mHG
score is described in (25). More specifically, given a ranked
list of genes, a subset A, and a corresponding mHG score
s, the mHG P-value tells us the exact probability of
observing an mHG score s0 � s under the null assumption
that all occurrence configurations of A in the ranked list
are equiprobable. In practice, DRIMust uses Stirling’s ap-
proximation (34) to compute all binomial coefficients
needed to assess HGTs.

Suffix trees

A suffix tree is a data structure that represents all the
suffixes of a given string in a way that allows fast imple-
mentation of many string operations. A path from the
root to a leaf in the tree represents a suffix. Each leaf of
the tree holds information about the indices of strings that
contain the suffix, and the starting positions of this suffix
within each such string. Restoring all occurrences of a
suffix is thus enabled, which further allows for the detec-
tion of DNA, RNA or protein substrings that manifest a
significant occurrence pattern in a set of biologically
related sequences. There are several algorithmic
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approaches to the efficient construction of a suffix tree for
a collection S1, ::: ,SN of strings (35–37). DRIMust uses a

version that takes O(M) time, whereM ¼
PN
i¼1

lengthðSiÞ by

implementing Ukkonen’s algorithm for generalized suffix
trees construction (37).

In DRIMust, an initial motif search phase produces
k-mers, which are words over the alphabet of the input
sequences. These candidate k-mers are derived by
enumerating paths of length k in the generalized suffix
tree generated for the input sequences. Next, the statistical
significance of the k-mers is calculated using the mHG
statistics [for more details on how P-values are
computed in the nodes of the suffix tree, see (29)]. In the
next stage, the promising k-mers are extended to produce
PSSMs.

PSSM extension

The promising k-mers are passed as input to a process that
extends them to PSSMs. Extension is obtained by a heur-
istic approach based on the Hamming neighbors of
the best 50 exact motifs. Briefly, starting from a single
k-mer, Hamming neighbors (of length k) are added to a
set of motifs as long as the PSSM representing that set
improves the observed enrichment P-value.

DRIMUST DESCRIPTION

Input

DRIMust is designed to search for enrichment of motifs in
large datasets of DNA, RNA or protein sequences (up to
40 000 sequences and up to 4 000 000 characters), which
can be represented as ranked lists or as two separated
sets of targets and background. Ranking should be
provided by the user according to the research question
of interest, e.g. binding affinity for ChIP-seq data. In the
case of uploading target and background sets, the latter
can be a selected random set of sequences taken from the
genome. When uploading the input data, the user is
prompted to choose between submitting one ranked list
of sequences in FASTA format or two sets of target and
background (see Figure 1A). In both options, the user is
prompted to choose the preferable search mode: single-
strand (suitable, though not restricted, to RNA) or
double-strand for DNA sequences. The default query
type is single-strand search mode. In the double-strand
mode, DRIMust searches for motifs consisting of a
sequence and its reverse complement that are enriched at
the top of the input list. As described earlier in the text, in
all search modes, DRIMust searches for motifs that are
over-represented at the top of the ranked list of sequences,
where the determination of the threshold that defines top
is data driven (see ‘DRIMust Methodology’ section).

DRIMust allows searching for k-mers of a specific
length or in a range of lengths. The default range is
5–10 characters in single-strand mode and 10 characters
in double-strand mode, whereas the maximal length range
supported by the web server is 4–20 characters. Notably,
when a range of lengths is provided, DRIMust will search

for the most significant motif, which will not necessarily
be the longest one. When a certain motif length is
expected, the user is encouraged to define an exact
length. Next, the user can choose to change the default
statistical significance threshold (set to 10�6) to any
threshold between 10�2 and 10�15. Finally, although not
required, DRIMust supports including an e-mail address
to which the results will be automatically sent when the
analysis is completed. This option is useful when sending
long jobs. After uploading the input data and defining the
parameters, the users are prompted to submit their job.

Output

DRIMust motif-searching process is divided into two
phases. In the first phase, DRIMust searches for k-mers,
which are over-represented at the top of the input ranked
list of sequences. As a default, DRIMust will report
enriched k-mers having P-value better than the selected
stringency. In the second phase, DRIMust expands the
most promising k-mers heuristically and creates motifs
represented by PSSMs. An average job for data sets con-
taining 4000 DNA sequences, total 2 000 000 characters,
takes 1 min and 10 s when double-strand search mode is
used and 15 s when single-strand search mode is used.
We ran DRIMust on the HOXA2-binding regions from

the ChIP-seq experiment by Donaldson et al. (38). In this
data set, the DNA sequences were ranked according to
their binding P-values [as defined by (38)]. As
demonstrated in Figure 1A, the best motifs are presented
in the output page as PSSMs displayed in a graphical
WebLogo representation (39) and also provided as a
downloadable text files. The P-value of each motif is
indicated above the logo. Furthermore, the user is
provided with a detailed list of all significant k-mers that
DRIMust has found to be enriched at significance level
better than the threshold (Figure 1B). In addition, each
row includes information about the total number of input
sequences (N); the total number of sequences containing
the motif (B); the index that is selected by the mHG stat-
istics as the division of the input list into target and back-
ground (n)—which optimizes the enrichment of the motif
at the top n sequences of the list; and the number of se-
quences containing the motif amongst the top n sequences
(b). Finally, the enrichment value, which compares the
abundance of the motif at the top of the list to the abun-
dance at the entire list, defined by (b/n)/(B/N), is indicated.
When a double-strand search mode is chosen, the reverse
complement motif is also shown. Clicking the ‘View oc-
currences alignment’ button (shown in Figure 1A) opens
up a window containing an aligned list of the motif occur-
rences mapped to the input sequences (Figure 1C). In
addition, clicking the ‘View occurrences distribution’
button (which is also shown in Figure 1A) depicts the
occurrences of the motif in the query sequences schemat-
ically (Figure 1D). This presentation nicely demonstrates
the rank imbalanced representation of the motif in the
ranked list. Furthermore, detailed information about
each occurrence can be obtained by placing the cursor
on a colored box (representing a motif occurrence).
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Figure 1. A view of DRIMust input and output pages. We ran DRIMust on the HOXA2-binding regions from the ChIP-seq experiment by
Donaldson et al. (38). In this data set, the DNA sequences were ranked according to their binding P-values (as defined by Donaldson et al.).
DRIMust was run using the double-strand search mode, and the rest of the parameters were set to default. The full data set is provided as an
example in the manual page of DRIMust web server. (A) When clicking the submit button (bottom left), an output page, summarizing the best
motifs found, is shown to the user. (B) By clicking the ‘view list’ button, the user is provided with a list of the significant k-mers and the statistical
details of each motif. (C) By clicking the ‘view occurrences alignment’ button, the user is provided with an aligned list of motif occurrences mapped
into the input sequences. (D) By clicking the ‘view occurrences distribution’ button, a window depicting the occurrences of the motif in the query
sequences is opened. More details on each occurrence are shown when placing the cursor on the occurrence box.
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RESULTS AND DISCUSSION

In recent years, high-throughput binding techniques have
been developed [e.g. ChIP-seq (4) for protein–DNA,
PAR-CLIP (10) for protein–RNA and SILAC (11) for
protein–proteins]. These methods yield extensive lists of
potential targets, ranked according to their binding
affinity. The main advantage of our method, implemented
in DRIMust, is that it searches for enriched motifs in the
entire ranked list and does not require defining a fixed set
of sequences as in the case of other motif-search algo-
rithms such as MEME (14), PhyloGibbs (40) and others.
Nevertheless, DRIMust does provide the option of up-
loading a target and background sets predefined by the
user. In the latter case, DRIMust searches motifs that
are overrepresented at the target set compared with the
background set. To evaluate the performance of
DRIMust in comparison with other state-of-the-art
methods, we ran DRIMust on 24 examples generated
from high-throughput binding experiments—10 TFs and
14 RBPs—and compared the results with those obtained
by using four other methods: the standard MEME
program (14); the DREME program (22) from the
MEME suit (http://meme.nbcr.net), which was optimized
for fast analysis of large data sets; XXmotif (23), a recent
web server, which was designed for efficient extraction of
position weight matrices from large datasets; and SCOPE
(20), which was designed to identify candidate regulatory
DNA motifs from sets of genes that are coordinately
regulated. Almost all the input examples comprised
ranked lists, except for p53, which comprised target and
background sets. As MEME, DREME and XXmotif
expect a target set as input, we converted the ranked
lists into target sets by taking the top 100 sequences in
the case of MEME (restricted by MEME’s limitation of
60 000 characters) and the top 20% sequences for the
other tools. The results of the comparison are summarized
in Supplementary Table S1. As demonstrated, in 22 of the
24 test examples, DRIMust found the motifs that were
compatible with the known motifs as the most significant
result. In comparison, DREME found the known consen-
sus in 19 cases, XXmotif detected the literature motif in 16
cases, whereas MEME and SCOPE detected the known
motif in only half of the cases. Notably, in the other
methods tested, the known motifs were not always
reported as the best motif. Strikingly, while DRIMust
was tested on the largest data sets, in all cases,
DRIMust completed the computations faster than the
other tools. As demonstrated in Supplementary Table
S1, the longest job took 1 min and 21 s on DRIMust
(for a data set containing 9995 sequences, each of length
100 nucleotides).

Overall, the web-application DRIMust has several ad-
vantages over existing methods. First, unlike many other
approaches, it does not exhaustively search over all
possible k-mers space and therefore can detect long
motifs and motifs over large alphabets. DRIMust runs
efficiently and allows for timely interaction with the
results, through a friendly interface and a clear output
format. Most importantly, by working with ranked lists,
DRIMust avoids the arbitrary designation of fixed sets of

sequences and exploits the ranking derived from experi-
mental measurements. More than that, DRIMust uses the
ranking to discriminate true motifs from other irrelevant
sequence elements (such as AT repetitive elements that are
abundant in 30UTRs), as the latter are not correlated with
the ranking and are therefore ignored by DRIMust. This
explains the observed accuracy of DRIMust compared
with other tools in many of the examples shown in
Supplementary Table S1.
As biological techniques such as ChIP-seq (6), ChIP-exo

(7), CLIP (9), PAR-CLIP (10) and others produce ranked
lists, using DRIMust is the natural choice for motif dis-
covery in these cases, as arises from the comparison in
Supplementary Table S1. DRIMust can efficiently deal
with the large data sets generated by such methods,
making it preferable for large volume data. Nevertheless,
DRIMust is also useful in cases when there are clear target
and background sets. In the latter scenario, the enrich-
ment is calculated using the hyper-geometric distribution.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary References
[4,10,38,41–44].
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