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RNA binding proteins (RBPs) play an important role in regulating many processes in the cell. RBPs often
recognize their RNA targets in a specific manner. In addition to the RNA primary sequence, the structure
of the RNA has been shown to play a central role in RNA recognition by RBPs. In recent years, many exper-
imental approaches, both in vitro and in vivo, were developed and employed to identify and characterize
RBP targets and extract their binding specificities. In vivo binding techniques, such as CrossLinking and
ImmunoPrecipitation (CLIP)-based methods, enable the characterization of protein binding sites on
RNA targets. However, these methods do not provide information regarding the structural preferences
of the protein. While methods to obtain the structure of RNA are available, inferring both the sequence
and the structure preferences of RBPs remains a challenge. Here we present SMARTIV, a novel computa-
tional tool for discovering combined sequence and structure binding motifs from in vivo RNA binding
data relying on the sequences of the target sites, the ranking of their binding scores and their predicted
secondary structure. The combined motifs are provided in a unified representation that is informative
and easy for visual perception. We tested the method on CLIP-seq data from different platforms for a vari-
ety of RBPs. Overall, we show that our results are highly consistent with known binding motifs of RBPs,
offering additional information on their structural preferences.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

RNA binding proteins (RBPs) are essential for many processes in
the cell, both in the nucleus and in the cytoplasm. Many RBPs rec-
ognize specific binding sites on their RNA target. These binding
sites are usually characterized by specific short sequences, known
as binding motifs. In addition to the primary RNA sequence, the
structure of the RNA target is known to play a central role in guid-
ing RBP-target recognition. It is well established that most RBPs
prefer to bind their targets at single stranded regions [1]. However,
some proteins, such as those possessing the double stranded RNA
binding domain (dsRBD), e.g. Staufen, are known to bind specifi-
cally to dsRNA [2]. While it has been commonly believed that the
dsRBDs recognize their RNA targets in a non-sequence specific
manner, recent studies have shown that they recognize both
sequence and structural determinants of the RNA [3]. In addition,
RBPs belonging to other domain families have been shown to bind
in a sequence specific manner to preferred RNA secondary struc-
tures, such as the yeast protein Vts1, which was experimentally
verified to bind to a sequence motif within a loop of a hairpin
structure [4].

In recent years, many high-throughput binding techniques have
been developed to identify the binding preferences of RBPs. These
technologies can be roughly divided into methods that measure
protein-RNA binding in vitro, based on High Throughput System-
atic Evolution of Ligands by Exponential Enrichment (HT-SELEX),
such as RNAcompete [5,6] and in vivo binding experiments, based
on CrossLinking and ImmunoPrecipitation (CLIP). CLIP (HITS-CLIP)
was originally introduced to identify the binding target of the neu-
ronal specific RBP Nova in the mouse transcriptome [7]. Since then
many different variants of the method have been developed and
applied to a large number of RBPs in different cell types, attempt-
ing to increase the sensitivity and specificity of the methods.
Among these methods are PAR-CLIP [8], iCLIP [9], eCLIP [10] and
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irCLIP [10]. Generally, the CLIP-based protocols start with UV irra-
diation of the cells to induce covalent crosslinks between RBPs and
the RNAs, followed by immunoprecipitation of the bound protein-
RNA complexes. Further the target sequences are extracted and
sequenced using high-throughput sequencing. Finally, the
sequences are mapped to the reference genome or transcriptome
and analysed by dedicated bioinformatic analysis tools that are tai-
lored to process the data resulting from the different CLIP method-
ologies. These dedicated tools are used to extract the binding sites,
namely peak calling, and quantify their binding signals. For an
extensive review on the different computational method for CLIP
data analyses, see Uhl et al. in this special issue of Methods [11].

The next important step in analysing both in vitro and in vivo
binding data is extracting the binding preferences of the proteins
of interest, known as motif discovery. Over the years, motif discov-
ery has attracted extensive research, resulting in hundreds of dif-
ferent tools, such as methods for discovering Transcription Factor
binding motifs [12]. In addition, many methods have been devel-
oped to infer the binding preferences of RBPs from high-
throughput RNA binding data (for an extensive review see [1]).
Given the accumulating information from structural studies of
protein-RNA, showing that the RNA structure plays a major role
in protein-RNA recognition, many of the dedicated RNA motif-
search algorithms consider both the primary sequence as well as
the structural attributes of the RNA [1], mostly derived from RNA
secondary structure predictions. MEMERIS was originally devel-
oped for extracting the binding preferences of splicing factors
[13]. MEMERIS integrates secondary structure information (specif-
ically single strandedness prediction) to the Expectation Minimiza-
tion motif discovery algorithm, implemented in the popular motif
discovery tool MEME [14]. The assumption behind MEMERIS is
that the RBPs preferentially bind to ssRNA regions and thus it is
designed to identify enriched motifs only in predicted single
stranded regions. More recently, the same group has introduced
GraphProt [15] for modelling the sequence and structure prefer-
ences of RBPs from either in vivo or in vitro data with no prior
assumption regarding the binding preferences of the proteins. Dif-
ferent fromMEMERIS, GraphProt is based on machine learning dis-
criminative models trained on the information from bound versus
the unbound data. Other approaches for modelling sequence and
structure preferences of RBPs have been specifically designed to
extract the binding preferences from in vitro data. RNAcontext
[16] and the more recent method RCK [17] have been employed
for extracting sequence and structure preferences from RNAcom-
pete data [5,6]. In the latter methods, the RNA structure is pre-
dicted by RNA folding algorithms (such as RNAplfold [18]) and is
represented as probabilities in the model, considering different
types of paired and unpaired RNA conformations. As in GraphProt,
RNAcontext and RCK do not require prior assumptions regarding
the secondary structure preferences of the proteins and thus they
can detect preferences of RBPs to bind in different structural con-
texts. Dao et al. developed aptaTRACE [19] for identifying
sequence–structure motifs from HT-SELEX data, taking into con-
sideration information from all rounds of SELEX selection, thus
extending the current models discriminating bound from unbound
data. The TEISER (Tool for Eliciting Informative Structural Elements
in RNA) computation framework uses whole genome-wide mea-
surements to extract enriched sequence–structure motifs of RBPs
[20]. TEISER was successfully employed for discovering the struc-
tural preferences of the TARBP2 RBPs from CLIP data [21]. Recently,
deep learning approaches that can incorporate information from
different sources of data obtained by both in vitro and in vivo tech-
nologies have been introduced for predicting the binding specifici-
ties of RBPs. Currently, these methods have been applied for
detecting sequence [22] and structure [23] binding preferences of
RBPs, independently.
As more and more data is accumulating in the public databases
from CLIP-seq binding experiments (e.g. DoRiNA [24], CLIPdb [25]),
there is a strong need for bioinformatic tools that can be used for
discovering the sequence and structure binding preferences from
in vivo data. Here we present a dedicated method, named SMARTIV
(Sequence and Structure Motif enrichment Analysis for Ranked
RNA daTa generated from In-Vivo binding experiments) for
extracting enriched motifs from in vivo high-throughput RNA bind-
ing data, combining sequence and secondary structure informa-
tion. SMARTIV uses the numerical binding scores obtained from
CLIP results and the predicted secondary structure of the
sequences to generate a ranked list of sequences in a combined
sequence and structure alphabet. Further, SMARTIV employs the
DRIMUST algorithm to efficiently extract k-mers from ranked
sequence data using suffix trees [26]. Finally, we provide a new
motif representation that is informative and easy for visual percep-
tion. The extracted motifs contain both sequence and structural
information concisely represented in a graphical logo using the
eight symbol alphabet A, C, G, U, a, c, g, u (upper case for unpaired
and lower case for paired nucleotides). We show that the com-
bined sequence and structure motifs generated from the CLIP data
are highly consistent with previously known sequence and struc-
ture binding preferences of the proteins.
2. Methods

2.1. Overview of the method

We present a k-mer based approach for efficient extraction of
combined sequence and structure motifs of RBPs from a ranked list
of RNA sequences, experimentally derived from in vivo high-
throughput RNA binding assays. The method is currently designed
for analysing processed CLIP-seq data, generated from CLIP data-
bases, though it can be applicable for any kind of in vivo RNA bind-
ing data that can be ranked based on a given numeric score. As a
first step, for a given RBP we extract the analysed bound sequences
from the CLIP database and sort them by their reported binding
score. Next, we map the sequences to their genomic location and
extend the sequences to a defined length that is then submitted
to the folding algorithm for predicting the secondary structure of
each nucleotide in the RNA sequence. In the current implementa-
tion we employ the RNAsubopt algorithm for RNA folding [18].
Based on the secondary structure predictions, we extend the tradi-
tional 4-letter alphabet of the RNA to a new 8-letter alphabet,
where each letter in the alphabet represents a specific nucleotide
in a defined secondary structure. Notably, we consider only two
possible states for defining a secondary structure preference:
unpaired (single stranded) and paired (double stranded). We then
apply the DRIMUST algorithm, implemented in our DRIMUST web
server [26], for extracting the most significant short words (k-
mers) that are highly enriched at the top of the list of the bound
sequences, using the minimal Hypergeometric Statistics (mHG)
[27]. Further, for each length k we cluster the significant k-mers
selected from the 4-letter list and from the translated 8-letter list
(separately for each list) and score the clusters based on the occur-
rences of the k-mers that constitute the cluster at the top of the list,
where ‘‘top” is defined by the mHG statistics. Finally, we generate
Position Weight Matrices (PWMs), representing the enriched
motifs, by aligning the k-mers in each cluster. In addition, we esti-
mate the p-values of the motifs generated from each cluster by cor-
relating the predicted score of each sequence, calculated based on
the PWM, to the binding score obtained from the original experi-
ment. SMARTIV reports the PWMs with the best p-values, for the
4-letter and 8-letter alphabets independently. A flowchart describ-
ing the algorithm is shown in Fig. 1.
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2.2. Methodology details

2.2.1. Data pre-processing
2.2.1.1. Sorting the CLIP results. As a first step, we extract the list
of processed sequences from a given CLIP experiment or a CLIP
database. When the list is provided as coordinates, we map
the coordinates to the corresponding genome and extract the
RNA sequences in FASTA format (based on the information pro-
vided regarding the genome assembly). Given that SMARTIV
relies on the sequence ranking we consider only datasets for
which a binding score is provided per each sequence in the pro-
cessed list. We then sort the list by the binding score value in
descending order (stronger binding scores are at the top of the
list) after removing sequences shorter than a minimal length
lmin (by default lmin = 13). For efficiency, we select from the
ranked list a total of 10,000 sequences in the following way:
1000 sequences from top of the list, and 9000 sequences from
bottom of the list.

2.2.1.2. RNA secondary structure prediction. In an attempt to gener-
ate a combined sequence and structure alphabet, we need to match
each sequence in the ranked list (derived in step 2.2.1.1) with its
corresponding RNA structure. Given the dynamic nature of RNA,
the strong influence of RBPs on RNA folding and the enormous
challenges in obtaining the three dimensional structure of the
entire cellular transcriptome, it is commonly accepted to consider
RNA structure at the level of secondary structure. Thus, we seek to
assign a predicted secondary structure to each nucleotide in the
sequence list. Over the years many algorithmic approaches were
developed for predicting RNA secondary structure (for review see
[28]). More recently, high-throughput experimental approaches
for inferring RNA secondary structure have also been developed
[29]. However, experimental data on RNA structure is still limited
to partial regions of the transcriptome of specific cell lines. Given
the above, we chose to predict the RNA secondary structure using
the RNAsubopt algorithm from the RNA Vienna package [18].
RNAsubopt calculates the RNA suboptimal structures with the low-
est free energy, finally defining each nucleotide in the sequence as
either paired or unpaired. The length of the input sequence for
RNAsubopt is defined by a parameter l, ranging between 100 and
300 nucleotides, consistent with the accepted knowledge in the
field for the optimal sequence length for folding RNA sequences.
For each CLIP-sequence we retrieve flanking regions from the cor-
responding genome so that the total length of each sequence pro-
vided to RNAsubopt is equal to l. In cases where the original
sequences are longer than l, we extract a sequence of length l from
the center of the sequence. Subsequently, each nucleotide in the
sequences data is assigned a predicted secondary structure
(paired/unpaired).

2.2.1.3. Translating the sequences to a combined sequence and
structure alphabet. The assigned secondary structure for each
nucleotide in the original C:IP=sequence is retrieved and matched
to the original sequence, finally keeping the original sequence
length (excluding the flanking regions that were generated for
folding purposes, as described in 2.2.1.2). In cases where the orig-
inal sequence length is longer than l we keep the truncated
sequences. Further we translate the sequences to an 8-letter alpha-
bet {a c g u A C G U} where a, c, g, u correspond to paired nts A, C, G,
U. Finally, we end up with two parallel sorted lists, the original
ranked CLIP-seq data in the 4-letter alphabet {A C G U} and the
folded CLIP-seq sequences in an 8-letter alphabet {a c g u A C G U}.

2.2.2. Extracting enriched k-mers from the ranked CLIP data
Similar to other k-mer based approaches for de novomotif iden-

tification (e.g. [17]), our algorithm is based on the assumption that
binding motifs are derived from overrepresented sub-sequences of
length k (k-mers) that occur more frequently in the bound
sequences (as defined by the experimental assay). Here we extract
k-mers from each ranked list, namely from the 4-letter alphabet
list (original CLIP-seq data) and the translated sequence list in
the 8-letter alphabet. To extract enriched k-mers we employ our
de novo motif search algorithm [27], implemented in the DRIMUST
webserver [26]. DRIMUST is a rank based approach for detecting
imbalanced enriched motifs and thus is highly suitable for extract-
ing enriched k-mers from CLIP data, in which the sequences are
ranked according to a given binding score. The great advantage
of DRIMUST over other algorithms for extracting over-
represented k-mers is that it searches the k-mers at the top of
the input sequences list, where the top of the list is dynamically
determined by the mHG statistics without a requirement to define
bound versus unbound. For each k-mer DRIMUST assigns a statis-
tical significance value using an mHG score, corrected for multiple
testing, which is a tight bound to the p-value (p-value � corrected
mHG score) [27]. DRIMUST uses suffix trees for efficient enumera-
tion of the candidate k-mers and produces the significant k-mers of
different lengths k in a given range. While in DRIMUST the range of
k in not limited, in SMARTIV we define the preferred range of k-
mers that is most applicable for extracting motifs of RBPs. This
range is provided as a parameter and can be changed by the users.

2.2.3. Generating adjusted PWMs from the detected enriched k-mers
In the next steps, the enriched k-mers from a selected range of

length k are used to generate PWMs. The details of the PWM
extraction procedure are given below (Sections 2.2.3.1, 2.2.3.2
and 2.2.3.3). Briefly, for each length k we cluster all significant k-
mers generated by DRIMUST. We then sort the resulting clusters
(generated for each length k) based on the occurrences of the
enriched k-mers and represent each cluster as a matrix that is
assigned a p-value, based on its correspondence to the original
binding scores. As depicted in Fig. 1, the procedure is performed
for all of the PWMs extracted from a given CLIP dataset, obtaining
a list of sequence motifs (in 4-letter alphabet) and a list of com-
bined sequence and structure motifs (in 8-letter alphabet) ranked
by their p-values.

2.2.3.1. Clustering the k-mers. Clustering of the k-mers is performed
for each length k separately using VSEARCH, a greedy centroid-
based algorithm with an adjustable sequence similarity function
[30,31]. Prior to the clustering, we sort the enriched k-mers based
on the p-value obtained for each k-mer by the DRIMUST algorithm
[26]. Briefly, the clustering process starts by selecting an initial k-
mer with the lowest p-value from the k-mers list, which is then
used as the cluster centroid. Subsequently, k-mers are added to
the cluster if their similarity to the centroid is equal to or above
a given threshold, where similarity is defined as number of
matches between the k-mers divided by the alignment length.
The process continues by selecting the next unclustered k-mer in
the ranked list as the centroid for a new cluster and is repeated
until all the k-mers are assigned to a cluster. Further, we align
the k-mers in each cluster by conducting a semi- multiple
sequence alignment of the centroid with all of the k-mers in the
cluster, prohibiting internal gaps.

2.2.3.2. Building Position Weight Matrices. To generate a PWM from
a given cluster wemultiply each k-mer in the aligned cluster by the
number of times the k-mer was found at the top of the list, as
defined by the DRIMUST algorithm [26]. Further, we generate a
PWM of dimension b * a, where a is the size of the alphabet (in
our case 4 for sequence only alphabet and 8 for the combined
sequence and structure alphabet) and b is the alignment length.
For the graphical representation, we use a modified version of



Fig. 1. A flowchart describing SMARTIV. The SMARTIV method takes as an input RNA binding data (e.g. CLIP-seq data). The output of the method is motif logos and
corresponding PWM’s ranked by the p-value of the combined sequence and structure motifs (in 8-letter alphabet) and sequence motifs (in a 4-letter alphabet). Each step of
the algorithm is shown as a grey oval. The different steps of the algorithm are connected with bold arrows. Colored rectangles represent data sources: sequence data is in light
blue, k-mers data is in light green, clusters of k-mers and resulting motifs are in shades peach colors. The input and output of each step of the algorithm are connected to the
process via thin arrows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the WebLogo algorithm [32], adjusted to present the PWMs for
both the 4-letter alphabet and the new 8-letter alphabet (Fig. 1).

2.2.3.3. Assigning occurrence scores and p-values to PWMs. To select
the best motifs for a given RBP, for each cluster we assign an occur-
rence score, which is defined as the total number of occurrences of
k-mers (within the cluster) at the top of the list of the sorted CLIP
sequences (in either original 4-letter alphabet or translated 8-letter
alphabet). While the occurrence score can be used for ranking the
clusters derived from a set of k-mers of a given length k, it is not
applicable for comparing between clusters of k-mers of different
lengths. Moreover, it cannot be used to compare PWMs generated
from different CLIP datasets (either from the same or from different
RBPs). To surmount these limitations, we assign a p-value to each
PWM based on the match of the PWM to the original binding
scores, derived from the CLIP data. To this end we scan each
sequence in the ranked list against the PWMs that were derived
from the k-mer clusters and we score each sequence based on its
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match to the given PWM. The score for each individual sequence is
defined as either the max-score, i.e. the max score for a sub-
sequence of length b (number of columns in the PWM) in the
sequence or the sum-score, i.e. the sum of scores for all overlapping
sub-sequences, where the score for a sub-sequence is calculated as
the sum of the log-odd scores over all positions in the
sub-sequence. The background probabilities used to calculate the
log odds score are defined as 0.25 and 0.125 for the 4-letter and
8-letter alphabet, respectively. Finally, the statistical significance
of the correspondence between the original sequence binding
scores (derived from the CLIP experiment) and the match score
between the PWM and the sequence is estimated using the mmHG
statistics, which evaluates the association between two ranked
lists [33–35], assigning an FDR corrected p-values to each PWM.
2.3. Method implementation

The SMARTIV method has been implemented to a program run-
ning on unix operating system via simple terminal-based com-
mand line access and a user-friendly webserver. The input for
the SMARTIV method is a CLIP-seq processed file including the list
of target sequences and their corresponding binding scores sorted
in descending order based on the score. The target sequences can
be provided as either coordinates (in BED format) or as sequences
in FASTA format. Notably, if structural information is available,
either from other secondary structure prediction algorithms or
experimental data, users can provide the ranked list of sequences
in 8-letter alphabet. When running SMARTIV, the users can select
the range of k-mers for generating the PWMs or choose the default
range (4–6). The output of SMARTIV is a list of predicted combined
sequence and structure motifs in the 8-letter alphabet as well as in
the traditional 4-letter alphabet, ranked by their p-value. Both the
combined motifs and the sequence motifs are provided in a graph-
ical format (WebLogo format) and as a PWM with their corre-
sponding p-values. In addition, SMARTIV provides a detailed list
of the enriched k-mers that were used to generate the PWM (cal-
culated by DRIMUST [26]). The SMARTIV source code is available
upon request. The webserver is accessible through the website
http://smartiv.technion.ac.il.
3. Results and discussion

3.1. Datasets

We have tested our method on a variety of CLIP datasets for
many different RBPs generated by different CLIP methods including
HITS-CLIP [36], PAR-CLIP [8] and iCLIP [9]. The datasets were
extracted from two dedicated databases of CLIP data: DoRiNA
[24] and CLIPdb [25]. An important feature of our motif prediction
algorithm is that it calculates the k-mer enrichment from a list of
sequences, sorted by their binding scores, without a requirement
to arbitrarily split the datasets to bound and unbound sets. Fur-
thermore, SMARTIV relies on the ranking of the CLIP binding scores
for evaluating the significance of the PWMs generated from the
data. Thus, to test our method we have chosen from the databases
only datasets for which binding scores are available. Here we pre-
sent results for a selected set of representative RBPs from different
RNA binding families, for which their sequence binding motifs
(extracted from either in vitro or in vivo studies) have been previ-
ously reported. Among these proteins we included RBPs for which
their structural preferences have been predicted by either motif
detection algorithms or inferred from structural or biochemical
experiments. Detailed information on the data sources of the CLIP
data of the selected proteins is given in Table S1.
3.2. Combined sequence and structure motifs are consistent with
sequence motifs

In Fig. 2 we present the motifs generated by SMARTIV for eight
selected RBPs, illustrating the motifs in 8-letter alphabet (gener-
ated from the translated lists) and in 4-letter alphabet (generated
from the sequence lists). Conventional upper case letters in the
graphical logos represent nucleotides predicted to be in unpaired
(single stranded) RNA conformations while letters in lower case
represent nucleotides predicted to be paired. For better perception
we use different color shading for upper and lower case letters (see
color bar under the Table). As demonstrated in Fig. 2, in the major-
ity of cases the combined sequence and structure motifs (specifi-
cally for ELAVL1, IGF2BP2, QKI, SRSF1, TIA1) are very similar to
the sequence motifs and are all in upper case and dark shading let-
ters, indicating the preference of the RBPs to be found in ssRNA.
These results are consistent with the well-established knowledge
in the field that most RBPs tend to bind to single stranded binding
sites on RNA. Notably, the strong agreement between the sequence
and structure motifs and the sequence only motifs shown in Fig. 2
is completely not trivial as the enriched k-mers that were used to
build the 8-letter motifs are selected from the independent list of
translated sequences. Interestingly, while as expected the occur-
rence score for the clusters that is generated from k-mers in the
8-letter alphabet is usually lower than for the clusters generated
from k-mers in 4-letter alphabet, the p-values of the PWMs, repre-
senting the match to the experimental binding score, are highly
consistent (Fig. 2). These results reveal that the k-mers from which
the motifs were derived are preferentially selected from stretches
of sequences that are predicted by the folding algorithm as
unpaired, reinforcing that the RBPs preferentially recognize their
binding sites in a ssRNA context. Overall, the motifs generated by
SMARTIV (both the 8-letter and the 4-letter motifs) are usually
consistent with the motifs reported for these RBPs in the literature
[6,8,16,37–41]. For comparison, in Fig. 2 we present the motifs
generated from the same experiment by other algorithms or when
unavailable from another CLIP-seq experiment that was conducted
for the same RBP. In addition, the motif from the RNA com-
pendium, predicted by RNAcontext [6] from in vitro data, is pro-
vided. Notably, in Fig. 2 we present only the most significant
motif among all the motifs generated from k-mers of different
lengths k, i.e. the motif that is most consistent with the experimen-
tal binding data. Nevertheless, as shown in Table S2, the motifs
predicted from k-mers of different lengths (within a given range
of k) are usually highly consistent between each other and are gen-
erally in accordance with previously reported motifs.

3.3. Combined sequence and structure motifs demonstrate known and
novel structural preferences for RNA binding proteins

As aforementioned, during the last decade, several methods
have been developed for detecting sequence and structure motifs
of RBPs. However, the majority of these methods were developed
and tested on in vitro data. To assess the 8-letter motifs predicted
by SMARTIV from the CLIP-seq we compared our predicted motifs
to motifs generated for the respective RBPs by the GraphProt state-
of-the-art algorithm [15]. In Table S3 we present motifs for seven
RBPs for which GraphProt motifs (for paired/unpaired preferences)
were available in the literature [15]. As shown in Table S3, the 8-
letter motifs predicted by SMARTIV are generally in agreement
with the motifs predicted by GraphProt. Note that the great advan-
tage of our 8-letter motifs over the GraphProt motifs is that SMAR-
TIV represents the sequence and structural information in a unified
representation, thus presenting the likelihood of each nucleotide in
the motif to be in either paired or unpaired conformation. On the
contrary, GraphProt presents the sequence and structure

http://smartiv.technion.ac.il


Fig. 2. Combined sequence and structure motifs for eight selected proteins. SMARTIV results for eight selected proteins, including sequence and structure motifs (in 8-letter
alphabet) and sequence motifs (in 4-letter alphabets), are presented. The p-value representing the match of the PWM to the experimental data is shown under each motif. The
published motifs generated from in vivo or in vitro data are presented. A letter and color code for the logo representations are given under the table.
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Fig. 3. Difference in the conservation of the sequences possessing the PUM2 sequence and structure enriched motif versus the sequence only motif. Bars represent the FDR
corrected –log (p-value) for the Mann Whitney Wilcoxon test, comparing the conservation of the sequences possessing the enriched k-mers of the selected PWM from the 8-
letter alphabet to the enriched k-mers of the selected PWM from the 4-letter alphabet. Sequence conservation was calculated for each position of the k-mer and ten
nucleotides upstream and downstream. Conservation values for the original CLIP sequences were retrieved from the UCSC phyloP table for placental mammalians.
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preferences in separate logos from which the correspondence
between the sequence and the structure preferences of individual
nucleotides can only be deduced from visual inspection of the
two independent logos. As for example, in the case of the PUM2
motif, while GraphProt predicts that all the positions in the motif
have similar probabilities to be in either paired or unpaired
regions, the motif predicted for PUM2 by SMARTIV shows a strong
preference for the 50 part of the motif, specifically the core GUA, to
be in a paired RNA conformation. The binding preference of the
Pumilio RBP family has been puzzling the protein-RNA field for
many years. While the structural data clearly show that the mem-
bers of the family bind to well-defined ssRNA sequences [42],
biochemical and genomics studies suggest that the proteins have
an important functional role in miRNA binding by inducing struc-
tural changes in non-accessible dsRNA regions [43,44]. To evaluate
SMARTIV 8-letter predicted motif for the human PUM2 protein, we
compared the sequence conservation of the k-mers belonging to
the best cluster extracted from the 8-letter alphabet to the conser-
vation of the k-mers that consist the best cluster from the 4 letter
alphabet. To this end we extracted the sequences that consist the
k-mers of length 6 that were used to derive the best PUM2 motif
(PWM). Note the overall length of the motif generated from the
k-mers is not necessarily of length k. In the latter case the PUM2
motif generated from k-mers of length 6 is of length 7. We further
calculated for each position in the mapped 6-mer and ten flaking
positions from each side, their conservation in placental mam-
malians, retrieved from the UCSC phyloP conservation table [45].
Consequently we compared the conservation values for the
sequences consisting the 6-mers and flanking regions from the 4-
letter and 8-letter alphabet and compared between the two groups
using the Man-Whitney Wilcoxson U test, applied for each position
in the motif and the flaking regions independently. Overall, the
conservation values of the sequences possessing the enriched
k-mers from the 8-letter alphabet were higher than those possess-
ing the enriched k-mers from the 4-letter sequence only alphabet.
Strikingly, as shown in Fig. 3, significant differences were found
merely for the positions within the motif. The conservation results
strongly support that the subset of PUM2 motifs, found within
regions predicted to be in paired conformation, tend to be more
conserved than the set of sequences containing the sequence motif
only. These results support SMARTIV prediction that the well-
defined PUM2 core sequence motif UGUA tends to reside in partial
dsRNA regions. As shown in Fig. 2, another RBP predicted by SMAR-
TIV to be partially in a paired structure is TDP-43. TDP-43 is an RBP,
possessing the RNA Recognition Motif (RRM), known to be
involved in several neurodegenerative diseases, including amy-
otrophic lateral sclerosis (ALS) [38]. Consistent with GraphProt
and many other motif detection methods, SMARTIV predicts that
the binding motif of TDB43 consists of a stretch of UG repeats.
Nevertheless, different than GraphProt, we predict that only the
central UG di-nucleotide is in an unpaired conformation while
the flanking repeats are predicted to be in paired conformation.
Here again our prediction is not in agreement with the crystal
structure of the TDP-43/RNA complex demonstrating that TDB-43
binds to a single stranded UG stretch [46]. Based on the highly con-
sistent motifs we obtained from k-mers of different lengths
(Table S1 and other results for different ranges of k, not shown),
we suggest that TDP43, which is also known to bind DNA, may
have a tendency to recognize the UG motif within weak RNA hair-
pin structures while finally binding the RNA in a single stranded
conformation.

4. Conclusions

In this paper we present a new method named SMARTIV, for
discovering combined sequence and structure motifs for RBPs from
in vivo binding data generated from different CLIP-based methods.
SMARTIV is available as a source code for download and as a web-
server. The SMARTIV algorithm has several advantages over other
recently developed methods for extracting sequence and structure
motifs from high-throughput RNA binding data. Similar to other
k-mer based motif detection algorithms, SMARTIV generates the
motifs from sets of sub-sequences, found to be enriched in
the data. However, while most other methods require splitting
the data artificially to bound and unbound datasets, our method,
considers the entire information from the dataset when ranked
by the reported binding scores. Clearly SMARTIV results depend
on the algorithm used to assign the binding score per sequence,
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nevertheless we find that it is usually robust to different scoring
systems. Moreover, the method is not restricted to a defined length
of k-mers and can efficiently extract motifs from a large range of
k-mers, finally choosing the motifs that are best correlated with
the original experimental data. Notably, given that the motifs
(PWMs) are generated from the enriched k-mers and are not
directly extracted from the data, the algorithm does not estimate
the statistical significance of the enriched motifs. Nevertheless,
for each PWM we provide a p-value that represents its correlation
with the experimental binding scores. The motif p-values are then
used by the algorithm to select the best motifs. The great advan-
tage of SMARTIV is that it generates combined motifs that repre-
sent the preference of each nucleotide to be in a paired or an
unpaired RNA region in a simple and highly intuitive graphical
manner. Importantly, while the combined sequence and structure
motifs clearly depend on the folding algorithm used to predict
the secondary structure of the RNA, known to be very noisy, only
sub-sequences that are consistently found in the same RNA confor-
mation (i.e. enriched k-mers in the translated sequences) are
selected to generate the final motifs. Moreover, while currently
our method relies on information from predicted secondary struc-
ture, it can be easily adapted to extract motifs from experimental
folding data, once such data is available for the entire transcrip-
tomes of the relevant cell lines or tissues for which the experi-
ments were conducted. Finally, SMARTIV is extremely fast. On
average, we process one CLIP dataset in approximately 3–4 min
on an Intel Core i7-2600 CPU @ 3.40 Ghz * 4 and 32 Gb memory.
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